10 research outputs found

    Submodular memetic approximation for multiobjective parallel test paper generation

    Get PDF
    Parallel test paper generation is a biobjective distributed resource optimization problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified assessment criteria. Generating high-quality parallel test papers is challenging due to its NP-hardness in both of the collective objective functions. In this paper, we propose a submodular memetic approximation algorithm for solving this problem. The proposed algorithm is an adaptive memetic algorithm (MA), which exploits the submodular property of the collective objective functions to design greedy-based approximation algorithms for enhancing steps of the multiobjective MA. Synergizing the intensification of submodular local search mechanism with the diversification of the population-based submodular crossover operator, our algorithm can jointly optimize the total quality maximization objective and the fairness quality maximization objective. Our MA can achieve provable near-optimal solutions in a huge search space of large datasets in efficient polynomial runtime. Performance results on various datasets have shown that our algorithm has drastically outperformed the current techniques in terms of paper quality and runtime efficiency

    Submodular Memetic Approximation for Multiobjective Parallel Test Paper Generation

    Full text link

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning

    Bio-Inspired Computing For Complex And Dynamic Constrained Problems

    Get PDF
    Bio-inspired algorithms are general-purpose optimisation methods that can find solutions with high qualities for complex problems. They are able to find these solutions with minimal knowledge of a search space. Bio-inspired algorithms (the design of which is inspired by nature) can easily adapt to changing environments. In this thesis, we contribute to the theoretical and empirical understanding of bioinspired algorithms, such as evolutionary algorithms and ant colony optimisation. We address complex problems as well as problems with dynamically changing constraints. Firstly, we review the most recent achievements in the theoretical analysis of dynamic optimisation via bio-inspired algorithms. We then continue our investigations in two major areas: static and dynamic combinatorial problems. To tackle static problems, we study the evolutionary algorithms that are enhanced by using a knowledge-based mutation approach in solving single- and multi-objective minimum spanning tree (MST) problems. Our results show that proper development of biased mutation can significantly improve the performance of evolutionary algorithms. Afterwards, we analyse the ability of single- and multi-objective algorithms to solve the packing while travelling (PWT) problem. This NP-hard problem is chosen to represent real-world multi-component problems. We outline the limitations of randomised local search in solving PWT and prove the advantage of using evolutionary algorithms. Our dynamic investigations begin with an empirical analysis of the ability of simple and advanced evolutionary algorithms to optimise the dynamic knapsack (KP) problem. We show that while optimising a population of solutions can speed up the ability of an algorithm to find optimal solutions after a dynamic change, it has the exact opposite effect in environments with high-frequency changes. Finally, we investigate the dynamic version of a more general problem known as the subset selection problem. We prove the inability of the adaptive greedy approach to maintain quality solutions in dynamic environments and illustrate the advantage of using evolutionary algorithms theoretically and practically.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    Solving Real-Life Hydroinformatics Problems with Operations Research and Artificial Intelligence

    Get PDF
    Many real life problems in the hydraulic engineering literature can be modelled as constrained optimisation problems. Often, they are addressed in the literature through genetic algorithms, although other techniques have been proposed. In this thesis, we address two of these real life problems through a variety of techniques taken from the Artificial Intelligence and Operations Research areas, such as mixed-integer linear programming, logic programming, genetic algorithms and path relinking, together with hybridization amongst these technologies and with hydraulic simulators. For the first time, an Answer Set Programming formulation of hydroinformatics problems is proposed. The two real life problems addressed hereby are the optimisation of the response in case of contamination events, and the optimisation of the positioning of the isolation valves. The constraints of the former describe the feasible region of the Multiple Travelling Salesman Problem, while the objective function is computed by a hydraulic simulator. A simulation–optimisation approach based on Genetic Algorithms, mathematical programming, and Path Relinking, and a thorough experimental analysis are discussed hereby. The constraints of the latter problem describe a graph partitioning enriched with a maximum flow, and it is a new variant of the common graph partitioning. A new mathematical model plus a new formalization in logic programming are discussed in this work. In particular, the technologies adopted are mixed-integer linear programming and Answer Set Programming. Addressing these two real applications in hydraulic engineering as constrained optimisation problems has allowed for i) computing applicable solutions to the real case, ii) computing better solutions than the ones proposed in the hydraulic literature, iii) exploiting graph theory for modellization and solving purposes, iv) solving the problems by well suited technologies in Operations Research and Artificial Intelligence, and v) designing new integrated and hybrid architectures for a more effective solving
    corecore