950 research outputs found

    Combinatorial Penalties: Which structures are preserved by convex relaxations?

    Get PDF
    We consider the homogeneous and the non-homogeneous convex relaxations for combinatorial penalty functions defined on support sets. Our study identifies key differences in the tightness of the resulting relaxations through the notion of the lower combinatorial envelope of a set-function along with new necessary conditions for support identification. We then propose a general adaptive estimator for convex monotone regularizers, and derive new sufficient conditions for support recovery in the asymptotic setting

    Stability of Influence Maximization

    Full text link
    The present article serves as an erratum to our paper of the same title, which was presented and published in the KDD 2014 conference. In that article, we claimed falsely that the objective function defined in Section 1.4 is non-monotone submodular. We are deeply indebted to Debmalya Mandal, Jean Pouget-Abadie and Yaron Singer for bringing to our attention a counter-example to that claim. Subsequent to becoming aware of the counter-example, we have shown that the objective function is in fact NP-hard to approximate to within a factor of O(n1−ϔ)O(n^{1-\epsilon}) for any Ï”>0\epsilon > 0. In an attempt to fix the record, the present article combines the problem motivation, models, and experimental results sections from the original incorrect article with the new hardness result. We would like readers to only cite and use this version (which will remain an unpublished note) instead of the incorrect conference version.Comment: Erratum of Paper "Stability of Influence Maximization" which was presented and published in the KDD1

    On Submodularity and Controllability in Complex Dynamical Networks

    Full text link
    Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power electronic actuator placement in a model of the European power grid.Comment: Original arXiv version of IEEE Transactions on Control of Network Systems paper (Volume 3, Issue 1), with a addendum (located in the ancillary documents) that explains an error in a proof of the original paper and provides a counterexample to the corresponding resul

    An Optimal Transmission Strategy for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgements

    Get PDF
    This paper presents a novel design methodology for optimal transmission policies at a smart sensor to remotely estimate the state of a stable linear stochastic dynamical system. The sensor makes measurements of the process and forms estimates of the state using a local Kalman filter. The sensor transmits quantized information over a packet dropping link to the remote receiver. The receiver sends packet receipt acknowledgments back to the sensor via an erroneous feedback communication channel which is itself packet dropping. The key novelty of this formulation is that the smart sensor decides, at each discrete time instant, whether to transmit a quantized version of either its local state estimate or its local innovation. The objective is to design optimal transmission policies in order to minimize a long term average cost function as a convex combination of the receiver's expected estimation error covariance and the energy needed to transmit the packets. The optimal transmission policy is obtained by the use of dynamic programming techniques. Using the concept of submodularity, the optimality of a threshold policy in the case of scalar systems with perfect packet receipt acknowledgments is proved. Suboptimal solutions and their structural results are also discussed. Numerical results are presented illustrating the performance of the optimal and suboptimal transmission policies.Comment: Conditionally accepted in IEEE Transactions on Control of Network System

    Structured sparsity-inducing norms through submodular functions

    Get PDF
    Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the L1-norm. In this paper, we investigate more general set-functions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nondecreasing submodular set-functions, the corresponding convex envelope can be obtained from its \lova extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or high-dimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rank-statistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as non-factorial priors for supervised learning
    • 

    corecore