87 research outputs found

    Improved Algorithms for Decremental Single-Source Reachability on Directed Graphs

    Full text link
    Recently we presented the first algorithm for maintaining the set of nodes reachable from a source node in a directed graph that is modified by edge deletions with o(mn)o(mn) total update time, where mm is the number of edges and nn is the number of nodes in the graph [Henzinger et al. STOC 2014]. The algorithm is a combination of several different algorithms, each for a different mm vs. nn trade-off. For the case of m=Θ(n1.5)m = \Theta(n^{1.5}) the running time is O(n2.47)O(n^{2.47}), just barely below mn=Θ(n2.5)mn = \Theta(n^{2.5}). In this paper we simplify the previous algorithm using new algorithmic ideas and achieve an improved running time of O~(min(m7/6n2/3,m3/4n5/4+o(1),m2/3n4/3+o(1)+m3/7n12/7+o(1)))\tilde O(\min(m^{7/6} n^{2/3}, m^{3/4} n^{5/4 + o(1)}, m^{2/3} n^{4/3+o(1)} + m^{3/7} n^{12/7+o(1)})). This gives, e.g., O(n2.36)O(n^{2.36}) for the notorious case m=Θ(n1.5)m = \Theta(n^{1.5}). We obtain the same upper bounds for the problem of maintaining the strongly connected components of a directed graph undergoing edge deletions. Our algorithms are correct with high probabililty against an oblivious adversary.Comment: This paper was presented at the International Colloquium on Automata, Languages and Programming (ICALP) 2015. A full version combining the findings of this paper and its predecessor [Henzinger et al. STOC 2014] is available at arXiv:1504.0795

    Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

    Get PDF

    Deterministic Fully Dynamic SSSP and More

    Full text link
    We present the first non-trivial fully dynamic algorithm maintaining exact single-source distances in unweighted graphs. This resolves an open problem stated by Sankowski [COCOON 2005] and van den Brand and Nanongkai [FOCS 2019]. Previous fully dynamic single-source distances data structures were all approximate, but so far, non-trivial dynamic algorithms for the exact setting could only be ruled out for polynomially weighted graphs (Abboud and Vassilevska Williams, [FOCS 2014]). The exact unweighted case remained the main case for which neither a subquadratic dynamic algorithm nor a quadratic lower bound was known. Our dynamic algorithm works on directed graphs, is deterministic, and can report a single-source shortest paths tree in subquadratic time as well. Thus we also obtain the first deterministic fully dynamic data structure for reachability (transitive closure) with subquadratic update and query time. This answers an open problem of van den Brand, Nanongkai, and Saranurak [FOCS 2019]. Finally, using the same framework we obtain the first fully dynamic data structure maintaining all-pairs (1+ϵ)(1+\epsilon)-approximate distances within non-trivial sub-nωn^\omega worst-case update time while supporting optimal-time approximate shortest path reporting at the same time. This data structure is also deterministic and therefore implies the first known non-trivial deterministic worst-case bound for recomputing the transitive closure of a digraph.Comment: Extended abstract to appear in FOCS 202

    Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

    Get PDF
    We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted directed graphs. Most importantly, we give a new deterministic incremental algorithm for the problem that handles updates in O~(mn^(4/3) log{W}/epsilon) total time (where the edge weights are from [1,W]) and explicitly maintains a (1+epsilon)-approximate distance matrix. For a fixed epsilon>0, this is the first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose update time is o(n^2) regardless of the number of edges. Furthermore, we also show how to improve the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et al. STOC\u2702, Bernstein STOC\u2713] from Monte Carlo randomized to Las Vegas randomized without increasing the running time bounds (with respect to the O~(*) notation). Our results are obtained by giving new algorithms for the problem of dynamically maintaining hubs, that is a set of O~(n/d) vertices which hit a shortest path between each pair of vertices, provided it has hop-length Omega(d). We give new subquadratic deterministic and Las Vegas algorithms for maintenance of hubs under either edge insertions or deletions

    Fully Dynamic Single-Source Reachability in Practice: An Experimental Study

    Full text link
    Given a directed graph and a source vertex, the fully dynamic single-source reachability problem is to maintain the set of vertices that are reachable from the given vertex, subject to edge deletions and insertions. It is one of the most fundamental problems on graphs and appears directly or indirectly in many and varied applications. While there has been theoretical work on this problem, showing both linear conditional lower bounds for the fully dynamic problem and insertions-only and deletions-only upper bounds beating these conditional lower bounds, there has been no experimental study that compares the performance of fully dynamic reachability algorithms in practice. Previous experimental studies in this area concentrated only on the more general all-pairs reachability or transitive closure problem and did not use real-world dynamic graphs. In this paper, we bridge this gap by empirically studying an extensive set of algorithms for the single-source reachability problem in the fully dynamic setting. In particular, we design several fully dynamic variants of well-known approaches to obtain and maintain reachability information with respect to a distinguished source. Moreover, we extend the existing insertions-only or deletions-only upper bounds into fully dynamic algorithms. Even though the worst-case time per operation of all the fully dynamic algorithms we evaluate is at least linear in the number of edges in the graph (as is to be expected given the conditional lower bounds) we show in our extensive experimental evaluation that their performance differs greatly, both on generated as well as on real-world instances

    Decremental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update Time

    Full text link
    In the decremental single-source shortest paths (SSSP) problem we want to maintain the distances between a given source node ss and every other node in an nn-node mm-edge graph GG undergoing edge deletions. While its static counterpart can be solved in near-linear time, this decremental problem is much more challenging even in the undirected unweighted case. In this case, the classic O(mn)O(mn) total update time of Even and Shiloach [JACM 1981] has been the fastest known algorithm for three decades. At the cost of a (1+ϵ)(1+\epsilon)-approximation factor, the running time was recently improved to n2+o(1)n^{2+o(1)} by Bernstein and Roditty [SODA 2011]. In this paper, we bring the running time down to near-linear: We give a (1+ϵ)(1+\epsilon)-approximation algorithm with m1+o(1)m^{1+o(1)} expected total update time, thus obtaining near-linear time. Moreover, we obtain m1+o(1)logWm^{1+o(1)} \log W time for the weighted case, where the edge weights are integers from 11 to WW. The only prior work on weighted graphs in o(mn)o(m n) time is the mn0.9+o(1)m n^{0.9 + o(1)}-time algorithm by Henzinger et al. [STOC 2014, ICALP 2015] which works for directed graphs with quasi-polynomial edge weights. The expected running time bound of our algorithm holds against an oblivious adversary. In contrast to the previous results which rely on maintaining a sparse emulator, our algorithm relies on maintaining a so-called sparse (h,ϵ)(h, \epsilon)-hop set introduced by Cohen [JACM 2000] in the PRAM literature. An (h,ϵ)(h, \epsilon)-hop set of a graph G=(V,E)G=(V, E) is a set FF of weighted edges such that the distance between any pair of nodes in GG can be (1+ϵ)(1+\epsilon)-approximated by their hh-hop distance (given by a path containing at most hh edges) on G=(V,EF)G'=(V, E\cup F). Our algorithm can maintain an (no(1),ϵ)(n^{o(1)}, \epsilon)-hop set of near-linear size in near-linear time under edge deletions.Comment: Accepted to Journal of the ACM. A preliminary version of this paper was presented at the 55th IEEE Symposium on Foundations of Computer Science (FOCS 2014). Abstract shortened to respect the arXiv limit of 1920 character

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs

    Bootstrapping Dynamic Distance Oracles

    Get PDF
    corecore