736 research outputs found

    Approximate Sparse Recovery: Optimizing Time and Measurements

    Full text link
    An approximate sparse recovery system consists of parameters k,Nk,N, an mm-by-NN measurement matrix, Φ\Phi, and a decoding algorithm, D\mathcal{D}. Given a vector, xx, the system approximates xx by x^=D(Φx)\widehat x =\mathcal{D}(\Phi x), which must satisfy x^x2Cxxk2\| \widehat x - x\|_2\le C \|x - x_k\|_2, where xkx_k denotes the optimal kk-term approximation to xx. For each vector xx, the system must succeed with probability at least 3/4. Among the goals in designing such systems are minimizing the number mm of measurements and the runtime of the decoding algorithm, D\mathcal{D}. In this paper, we give a system with m=O(klog(N/k))m=O(k \log(N/k)) measurements--matching a lower bound, up to a constant factor--and decoding time O(klogcN)O(k\log^c N), matching a lower bound up to log(N)\log(N) factors. We also consider the encode time (i.e., the time to multiply Φ\Phi by xx), the time to update measurements (i.e., the time to multiply Φ\Phi by a 1-sparse xx), and the robustness and stability of the algorithm (adding noise before and after the measurements). Our encode and update times are optimal up to log(N)\log(N) factors

    Summary Based Structures with Improved Sublinear Recovery for Compressed Sensing

    Get PDF
    We introduce a new class of measurement matrices for compressed sensing, using low order summaries over binary sequences of a given length. We prove recovery guarantees for three reconstruction algorithms using the proposed measurements, including 1\ell_1 minimization and two combinatorial methods. In particular, one of the algorithms recovers kk-sparse vectors of length NN in sublinear time poly(klogN)\text{poly}(k\log{N}), and requires at most Ω(klogNloglogN)\Omega(k\log{N}\log\log{N}) measurements. The empirical oversampling constant of the algorithm is significantly better than existing sublinear recovery algorithms such as Chaining Pursuit and Sudocodes. In particular, for 103N10810^3\leq N\leq 10^8 and k=100k=100, the oversampling factor is between 3 to 8. We provide preliminary insight into how the proposed constructions, and the fast recovery scheme can be used in a number of practical applications such as market basket analysis, and real time compressed sensing implementation

    Sublinear-Time Algorithms for Compressive Phase Retrieval

    Full text link
    In the compressive phase retrieval problem, or phaseless compressed sensing, or compressed sensing from intensity only measurements, the goal is to reconstruct a sparse or approximately kk-sparse vector xRnx \in \mathbb{R}^n given access to y=Φxy= |\Phi x|, where v|v| denotes the vector obtained from taking the absolute value of vRnv\in\mathbb{R}^n coordinate-wise. In this paper we present sublinear-time algorithms for different variants of the compressive phase retrieval problem which are akin to the variants considered for the classical compressive sensing problem in theoretical computer science. Our algorithms use pure combinatorial techniques and near-optimal number of measurements.Comment: The ell_2/ell_2 algorithm was substituted by a modification of the ell_infty/ell_2 algorithm which strictly subsumes i

    Algorithmic linear dimension reduction in the l_1 norm for sparse vectors

    Get PDF
    This paper develops a new method for recovering m-sparse signals that is simultaneously uniform and quick. We present a reconstruction algorithm whose run time, O(m log^2(m) log^2(d)), is sublinear in the length d of the signal. The reconstruction error is within a logarithmic factor (in m) of the optimal m-term approximation error in l_1. In particular, the algorithm recovers m-sparse signals perfectly and noisy signals are recovered with polylogarithmic distortion. Our algorithm makes O(m log^2 (d)) measurements, which is within a logarithmic factor of optimal. We also present a small-space implementation of the algorithm. These sketching techniques and the corresponding reconstruction algorithms provide an algorithmic dimension reduction in the l_1 norm. In particular, vectors of support m in dimension d can be linearly embedded into O(m log^2 d) dimensions with polylogarithmic distortion. We can reconstruct a vector from its low-dimensional sketch in time O(m log^2(m) log^2(d)). Furthermore, this reconstruction is stable and robust under small perturbations
    corecore