10 research outputs found

    On the topology Of network fine structures

    Get PDF
    Multi-relational dynamics are ubiquitous in many complex systems like transportations, social and biological. This thesis studies the two mathematical objects that encapsulate these relationships --- multiplexes and interval graphs. The former is the modern outlook in Network Science to generalize the edges in graphs while the latter was popularized during the 1960s in Graph Theory. Although multiplexes and interval graphs are nearly 50 years apart, their motivations are similar and it is worthwhile to investigate their structural connections and properties. This thesis look into these mathematical objects and presents their connections. For example we will look at the community structures in multiplexes and learn how unstable the detection algorithms are. This can lead researchers to the wrong conclusions. Thus it is important to get formalism precise and this thesis shows that the complexity of interval graphs is an indicator to the precision. However this measure of complexity is a computational hard problem in Graph Theory and in turn we use a heuristic strategy from Network Science to tackle the problem. One of the main contributions of this thesis is the compilation of the disparate literature on these mathematical objects. The novelty of this contribution is in using the statistical tools from population biology to deduce the completeness of this thesis's bibliography. It can also be used as a framework for researchers to quantify the comprehensiveness of their preliminary investigations. From the large body of multiplex research, the thesis focuses on the statistical properties of the projection of multiplexes (the reduction of multi-relational system to a single relationship network). It is important as projection is always used as the baseline for many relevant algorithms and its topology is insightful to understand the dynamics of the system.Open Acces

    Online Maximum Independent Set of Hyperrectangles

    Full text link
    The maximum independent set problem is a classical NP-hard problem in theoretical computer science. In this work, we study a special case where the family of graphs considered is restricted to intersection graphs of sets of axis-aligned hyperrectangles and the input is provided in an online fashion. We prove bounds on the competitive ratio of an optimal online algorithm under the adaptive offline, adaptive online, and oblivious adversary models, for several classes of hyperrectangles and restrictions on the order of the input. We are the first to present results on this problem under the oblivious adversary model. We prove bounds on the competitive ratio for unit hypercubes, σ\sigma-bounded hypercubes, unit-volume hypercubes, arbitrary hypercubes, and arbitrary hyperrectangles, in both arbitrary and non-dominated order. We are also the first to present results under the adaptive offline and adaptive online adversary models with input in non-dominated order, proving bounds on the competitive ratio for the same classes of hyperrectangles; for input in arbitrary order, we present the first results on σ\sigma-bounded hypercubes, unit-volume hyperrectangles, arbitrary hypercubes, and arbitrary hyperrectangles. For input in dominating order, we show that the performance of the naive greedy algorithm matches the performance of an optimal offline algorithm in all cases. We also give lower bounds on the competitive ratio of a probabilistic greedy algorithm under the oblivious adversary model. We conclude by discussing several promising directions for future work.Comment: 27 pages, 12 figure

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Sublinear approximation algorithms for boxicity and related problems

    No full text
    The boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes in R-k. Cubicity is a variant of boxicity, where the axis parallel boxes in the intersection representation are restricted to be of unit length sides. Deciding whether the boxicity (resp. cubicity) of a graph is at most k is NP-hard, even for k = 2 or 3. Computing these parameters is inapproximable within O(n(1 -) (epsilon))-factor, for any epsilon > 0 in polynomial time unless NP = ZPP, even for many simple graph classes. In this paper, we give a polynomial time k(n) factor approximation algorithm for computing boxicity and a K(n)log logn] factor approximation algorithm for computing the cubicity, where K(n) = 2 n root loglogn / root logn]. These o(n) factor approximation algorithms also produce the corresponding box (resp. cube) representations. As a special case, this resolves the question posed by Spinrad (2003) about polynomial time construction of o(n) dimensional box representations for boxicity 2 graphs. Other consequences of our approximation algorithm include 0(K(n)) factor approximation algorithms for computing the following parameters: the partial order dimension (poset dimension) of finite posets, the interval dimension of finite posets, minimum chain cover of bipartite graphs, Ferrers dimension of digraphs and threshold dimension of split graphs and co-bipartite graphs. Each of these parameters is inapproximable within an O(n(1 -) (epsilon))-factor, for any e > 0 in polynomial time unless NP = ZPP and the algorithms we derive seem to be the first o(n) factor approximation algorithms known for all these problems. We note that obtaining a o(n) factor approximation for poset dimension was also mentioned as an open problem by Felsner et al. (2017). In the second part of this paper, parameterized approximation algorithms for boxicity using various edit distance parameters are derived. We also present a parameterized approximation scheme for cubicity, using minimum vertex cover number as the parameter. (C) 2017 Elsevier B.V. All rights reserved
    corecore