618 research outputs found

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Improved Algorithms for White-Box Adversarial Streams

    Full text link
    We study streaming algorithms in the white-box adversarial stream model, where the internal state of the streaming algorithm is revealed to an adversary who adaptively generates the stream updates, but the algorithm obtains fresh randomness unknown to the adversary at each time step. We incorporate cryptographic assumptions to construct robust algorithms against such adversaries. We propose efficient algorithms for sparse recovery of vectors, low rank recovery of matrices and tensors, as well as low rank plus sparse recovery of matrices, i.e., robust PCA. Unlike deterministic algorithms, our algorithms can report when the input is not sparse or low rank even in the presence of such an adversary. We use these recovery algorithms to improve upon and solve new problems in numerical linear algebra and combinatorial optimization on white-box adversarial streams. For example, we give the first efficient algorithm for outputting a matching in a graph with insertions and deletions to its edges provided the matching size is small, and otherwise we declare the matching size is large. We also improve the approximation versus memory tradeoff of previous work for estimating the number of non-zero elements in a vector and computing the matrix rank.Comment: ICML 202

    Learning and Control of Dynamical Systems

    Get PDF
    Despite the remarkable success of machine learning in various domains in recent years, our understanding of its fundamental limitations remains incomplete. This knowledge gap poses a grand challenge when deploying machine learning methods in critical decision-making tasks, where incorrect decisions can have catastrophic consequences. To effectively utilize these learning-based methods in such contexts, it is crucial to explicitly characterize their performance. Over the years, significant research efforts have been dedicated to learning and control of dynamical systems where the underlying dynamics are unknown or only partially known a priori, and must be inferred from collected data. However, much of these classical results have focused on asymptotic guarantees, providing limited insights into the amount of data required to achieve desired control performance while satisfying operational constraints such as safety and stability, especially in the presence of statistical noise. In this thesis, we study the statistical complexity of learning and control of unknown dynamical systems. By utilizing recent advances in statistical learning theory, high-dimensional statistics, and control theoretic tools, we aim to establish a fundamental understanding of the number of samples required to achieve desired (i) accuracy in learning the unknown dynamics, (ii) performance in the control of the underlying system, and (iii) satisfaction of the operational constraints such as safety and stability. We provide finite-sample guarantees for these objectives and propose efficient learning and control algorithms that achieve the desired performance at these statistical limits in various dynamical systems. Our investigation covers a broad range of dynamical systems, starting from fully observable linear dynamical systems to partially observable linear dynamical systems, and ultimately, nonlinear systems. We deploy our learning and control algorithms in various adaptive control tasks in real-world control systems and demonstrate their strong empirical performance along with their learning, robustness, and stability guarantees. In particular, we implement one of our proposed methods, Fourier Adaptive Learning and Control (FALCON), on an experimental aerodynamic testbed under extreme turbulent flow dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-art stabilization performance and consistently outperforms conventional and other learning-based methods by at least 37%, despite using 8 times less data. The superior performance of FALCON arises from its physically and theoretically accurate modeling of the underlying nonlinear turbulent dynamics, which yields rigorous finite-sample learning and performance guarantees. These findings underscore the importance of characterizing the statistical complexity of learning and control of unknown dynamical systems.</p

    Efficient Computation of the Quantum Rate-Distortion Function

    Full text link
    The quantum rate-distortion function plays a fundamental role in quantum information theory, however there is currently no practical algorithm which can efficiently compute this function to high accuracy for moderate channel dimensions. In this paper, we show how symmetry reduction can significantly simplify common instances of the entanglement-assisted quantum rate-distortion problems. This allows for more efficient computation regardless of the numerical algorithm being used, and provides insight into the quantum channels which obtain the optimal rate-distortion tradeoff. Additionally, we propose an inexact variant of the mirror descent algorithm to compute the quantum rate-distortion function with provable sublinear convergence rates. We show how this mirror descent algorithm is related to Blahut-Arimoto and expectation-maximization methods previously used to solve similar problems in information theory. Using these techniques, we present the first numerical experiments to compute a multi-qubit quantum rate-distortion function, and show that our proposed algorithm solves faster and to higher accuracy when compared to existing methods.Comment: 37 pages, 2 figures, 2 tables. v2: Minor edits to introduction, abstract, and notatio

    Quantum Simulation of Boson-Related Hamiltonians: Techniques, Effective Hamiltonian Construction, and Error Analysis

    Full text link
    Elementary quantum mechanics proposes that a closed physical system consistently evolves in a reversible manner. However, control and readout necessitate the coupling of the quantum system to the external environment, subjecting it to relaxation and decoherence. Consequently, system-environment interactions are indispensable for simulating physically significant theories. A broad spectrum of physical systems in condensed-matter and high-energy physics, vibrational spectroscopy, and circuit and cavity QED necessitates the incorporation of bosonic degrees of freedom, such as phonons, photons, and gluons, into optimized fermion algorithms for near-future quantum simulations. In particular, when a quantum system is surrounded by an external environment, its basic physics can usually be simplified to a spin or fermionic system interacting with bosonic modes. Nevertheless, troublesome factors such as the magnitude of the bosonic degrees of freedom typically complicate the direct quantum simulation of these interacting models, necessitating the consideration of a comprehensive plan. This strategy should specifically include a suitable fermion/boson-to-qubit mapping scheme to encode sufficiently large yet manageable bosonic modes, and a method for truncating and/or downfolding the Hamiltonian to the defined subspace for performing an approximate but highly accurate simulation, guided by rigorous error analysis. In this paper, we aim to provide such an exhaustive strategy. Specifically, we emphasize two aspects: (1) the discussion of recently developed quantum algorithms for these interacting models and the construction of effective Hamiltonians, and (2) a detailed analysis regarding a tightened error bound for truncating the bosonic modes for a class of fermion-boson interacting Hamiltonians

    Quantum computing for finance

    Full text link
    Quantum computers are expected to surpass the computational capabilities of classical computers and have a transformative impact on numerous industry sectors. We present a comprehensive summary of the state of the art of quantum computing for financial applications, with particular emphasis on stochastic modeling, optimization, and machine learning. This Review is aimed at physicists, so it outlines the classical techniques used by the financial industry and discusses the potential advantages and limitations of quantum techniques. Finally, we look at the challenges that physicists could help tackle

    Robust Dequantization of the Quantum Singular value Transformation and Quantum Machine Learning Algorithms

    Full text link
    Several quantum algorithms for linear algebra problems, and in particular quantum machine learning problems, have been "dequantized" in the past few years. These dequantization results typically hold when classical algorithms can access the data via length-squared sampling. In this work we investigate how robust these dequantization results are. We introduce the notion of approximate length-squared sampling, where classical algorithms are only able to sample from a distribution close to the ideal distribution in total variation distance. While quantum algorithms are natively robust against small perturbations, current techniques in dequantization are not. Our main technical contribution is showing how many techniques from randomized linear algebra can be adapted to work under this weaker assumption as well. We then use these techniques to show that the recent low-rank dequantization framework by Chia, Gily\'en, Li, Lin, Tang and Wang (JACM 2022) and the dequantization framework for sparse matrices by Gharibian and Le Gall (STOC 2022), which are both based on the Quantum Singular Value Transformation, can be generalized to the case of approximate length-squared sampling access to the input. We also apply these results to obtain a robust dequantization of many quantum machine learning algorithms, including quantum algorithms for recommendation systems, supervised clustering and low-rank matrix inversion.Comment: 55 page
    • …
    corecore