12 research outputs found

    Sublabel-Accurate Relaxation of Nonconvex Energies

    Full text link
    We propose a novel spatially continuous framework for convex relaxations based on functional lifting. Our method can be interpreted as a sublabel-accurate solution to multilabel problems. We show that previously proposed functional lifting methods optimize an energy which is linear between two labels and hence require (often infinitely) many labels for a faithful approximation. In contrast, the proposed formulation is based on a piecewise convex approximation and therefore needs far fewer labels. In comparison to recent MRF-based approaches, our method is formulated in a spatially continuous setting and shows less grid bias. Moreover, in a local sense, our formulation is the tightest possible convex relaxation. It is easy to implement and allows an efficient primal-dual optimization on GPUs. We show the effectiveness of our approach on several computer vision problems

    Functional Liftings of Vectorial Variational Problems with Laplacian Regularization

    Full text link
    We propose a functional lifting-based convex relaxation of variational problems with Laplacian-based second-order regularization. The approach rests on ideas from the calibration method as well as from sublabel-accurate continuous multilabeling approaches, and makes these approaches amenable for variational problems with vectorial data and higher-order regularization, as is common in image processing applications. We motivate the approach in the function space setting and prove that, in the special case of absolute Laplacian regularization, it encompasses the discretization-first sublabel-accurate continuous multilabeling approach as a special case. We present a mathematical connection between the lifted and original functional and discuss possible interpretations of minimizers in the lifted function space. Finally, we exemplarily apply the proposed approach to 2D image registration problems.Comment: 12 pages, 3 figures; accepted at the conference "Scale Space and Variational Methods" in Hofgeismar, Germany 201

    A Combinatorial Solution to Non-Rigid 3D Shape-to-Image Matching

    Get PDF
    We propose a combinatorial solution for the problem of non-rigidly matching a 3D shape to 3D image data. To this end, we model the shape as a triangular mesh and allow each triangle of this mesh to be rigidly transformed to achieve a suitable matching to the image. By penalising the distance and the relative rotation between neighbouring triangles our matching compromises between image and shape information. In this paper, we resolve two major challenges: Firstly, we address the resulting large and NP-hard combinatorial problem with a suitable graph-theoretic approach. Secondly, we propose an efficient discretisation of the unbounded 6-dimensional Lie group SE(3). To our knowledge this is the first combinatorial formulation for non-rigid 3D shape-to-image matching. In contrast to existing local (gradient descent) optimisation methods, we obtain solutions that do not require a good initialisation and that are within a bound of the optimal solution. We evaluate the proposed method on the two problems of non-rigid 3D shape-to-shape and non-rigid 3D shape-to-image registration and demonstrate that it provides promising results.Comment: 10 pages, 7 figure

    Convex relaxations for large-scale graphically structured nonconvex problems with spherical constraints: An optimal transport approach

    Full text link
    In this paper we derive a moment relaxation for large-scale nonsmooth optimization problems with graphical structure and spherical constraints. In contrast to classical moment relaxations for global polynomial optimization that suffer from the curse of dimensionality we exploit the partially separable structure of the optimization problem to reduce the dimensionality of the search space. Leveraging optimal transport and Kantorovich--Rubinstein duality we decouple the problem and derive a tractable dual subspace approximation of the infinite-dimensional problem using spherical harmonics. This allows us to tackle possibly nonpolynomial optimization problems with spherical constraints and geodesic coupling terms. We show that the duality gap vanishes in the limit by proving that a Lipschitz continuous dual multiplier on a unit sphere can be approximated as closely as desired in terms of a Lipschitz continuous polynomial. The formulation is applied to sphere-valued imaging problems with total variation regularization and graph-based simultaneous localization and mapping (SLAM). In imaging tasks our approach achieves small duality gaps for a moderate degree. In graph-based SLAM our approach often finds solutions which after refinement with a local method are near the ground truth solution
    corecore