15,150 research outputs found

    Comparison of modern nonlinear multichannel filtering techniques using recent full-reference image quality assessment methods

    Get PDF
    In the paper the quality analysis of some modern nonlinear color image filtering methods is presented. Traditionally, many image filtering algorithms are analyzed using classical image quality assessment metrics, mainly based on the Mean Square Error (MSE). However, they are all poorly correlated with subjective evaluation of images performed by observers.Due to necessity of better image quality estimation, some other methods have been recently proposed. They are especially useful for development of new lossy image compression algorithms, as well as evaluation of images obtained after applying some image processing algorithms e.g. filtering methods.Most of image quality algorithms are based on the comparison of similarity between two images: the original (reference) one and the second one which is processed e.g. contaminated by noise, filtered or lossily compressed. Such a group of full-reference methods is actually the only existing universal solution for automatic image quality assessment. There are also some blind (no-reference) algorithms but they are specialized for some kinds of distortions e.g. blocky effects in the JPEG compressed images. The last years' state-of-the-art full-reference metrics are Structural Similarity (SSIM) and M-SVD based on the Singular Value Decomposition of two images' respective blocks.Another important aspect of color image quality assessment is the way the color information is utilized in the quality metric. The authors of two analyzed metrics generally do not consider the effects of using color information at all or limit the usage of their metrics to luminance information in YUV color model only so in this article the solutions based on RGB and CIE LAB models are compared.In the paper the results of quality assessment using the SSIM and M-SVD methods obtained for some modern median-based filters and Distance-Directional Filter for color images are presented with comparison to those obtained using classical metrics as the verification of their usefulness

    SUR-Net: Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The Satisfied User Ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the probability distribution of the Just Noticeable Difference (JND) level, the smallest distortion level that can be perceived by a subject. We propose the first deep learning approach to predict such SUR curves. Instead of the direct approach of regressing the SUR curve itself for a given reference image, our model is trained on pairs of images, original and compressed. Relying on a Siamese Convolutional Neural Network (CNN), feature pooling, a fully connected regression-head, and transfer learning, we achieved a good prediction performance. Experiments on the MCL-JCI dataset showed a mean Bhattacharyya distance between the predicted and the original JND distributions of only 0.072

    Quality Prediction of DWT-Based Compression for Remote Sensing Image Using Multiscale and Multilevel Differences Assessment Metric

    Get PDF
    Accurate assessment and prediction of visual quality are of fundamental importance to lossy compression of remote sensing image, since it is not only a basic indicator of coding performance, but also an important guide to optimize the coding procedure. In the paper, a novel quality prediction model based on multiscale and multilevel distortion (MSMLD) assessment metric is preferred for DWT-based coding of remote sensing image. Firstly, we propose an image quality assessment metric named MSMLD, which assesses quality by calculating distortions in three levels and multiscale sampling between original images and compressed images. The MSMLD method not only has a better consistency with subjective perception values, but also shows the distortion features and visual quality of compressed image well. Secondly, some significant characteristics in spatial and wavelet domain that link well with quality criteria of MSMLD are chosen with multiple linear regression and used to establish a compression quality prediction model of MSMLD. Finally, the quality prediction model is extended to a wider range of compression ratios from 4 : 1 to 20 : 1 and tested with experiment. The experimental results show that the prediction accuracy of the proposed model is up to 98.33%, and its mean prediction error is less than state-of-the-art methods
    • …
    corecore