1,478 research outputs found

    Deep learning-based denoising streamed from mobile phones improves speech-in-noise understanding for hearing aid users

    Full text link
    The hearing loss of almost half a billion people is commonly treated with hearing aids. However, current hearing aids often do not work well in real-world noisy environments. We present a deep learning based denoising system that runs in real time on iPhone 7 and Samsung Galaxy S10 (25ms algorithmic latency). The denoised audio is streamed to the hearing aid, resulting in a total delay of around 75ms. In tests with hearing aid users having moderate to severe hearing loss, our denoising system improves audio across three tests: 1) listening for subjective audio ratings, 2) listening for objective speech intelligibility, and 3) live conversations in a noisy environment for subjective ratings. Subjective ratings increase by more than 40%, for both the listening test and the live conversation compared to a fitted hearing aid as a baseline. Speech reception thresholds, measuring speech understanding in noise, improve by 1.6 dB SRT. Ours is the first denoising system that is implemented on a mobile device, streamed directly to users' hearing aids using only a single channel as audio input while improving user satisfaction on all tested aspects, including speech intelligibility. This includes overall preference of the denoised and streamed signal over the hearing aid, thereby accepting the higher latency for the significant improvement in speech understanding

    Signal processing algorithms for digital hearing aids

    Get PDF
    Hearing loss is a problem that severely affects the speech communication and disqualify most hearing-impaired people from holding a normal life. Although the vast majority of hearing loss cases could be corrected by using hearing aids, however, only a scarce of hearing-impaired people who could be benefited from hearing aids purchase one. This irregular use of hearing aids arises from the existence of a problem that, to date, has not been solved effectively and comfortably: the automatic adaptation of the hearing aid to the changing acoustic environment that surrounds its user. There are two approaches aiming to comply with it. On the one hand, the "manual" approach, in which the user has to identify the acoustic situation and choose the adequate amplification program has been found to be very uncomfortable. The second approach requires to include an automatic program selection within the hearing aid. This latter approach is deemed very useful by most hearing aid users, even if its performance is not completely perfect. Although the necessity of the aforementioned sound classification system seems to be clear, its implementation is a very difficult matter. The development of an automatic sound classification system in a digital hearing aid is a challenging goal because of the inherent limitations of the Digital Signal Processor (DSP) the hearing aid is based on. The underlying reason is that most digital hearing aids have very strong constraints in terms of computational capacity, memory and battery, which seriously limit the implementation of advanced algorithms in them. With this in mind, this thesis focuses on the design and implementation of a prototype for a digital hearing aid able to automatically classify the acoustic environments hearing aid users daily face on and select the amplification program that is best adapted to such environment aiming at enhancing the speech intelligibility perceived by the user. The most important contribution of this thesis is the implementation of a prototype for a digital hearing aid that automatically classifies the acoustic environment surrounding its user and selects the most appropriate amplification program for such environment, aiming at enhancing the sound quality perceived by the user. The battery life of this hearing aid is 140 hours, which has been found to be very similar to that of hearing aids in the market, and what is of key importance, there is still about 30% of the DSP resources available for implementing other algorithms

    Towards Learning Representations in Visual Computing Tasks

    Get PDF
    abstract: The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss. In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Attention-based Speech Enhancement Using Human Quality Perception Modelling

    Full text link
    Perceptually-inspired objective functions such as the perceptual evaluation of speech quality (PESQ), signal-to-distortion ratio (SDR), and short-time objective intelligibility (STOI), have recently been used to optimize performance of deep-learning-based speech enhancement algorithms. These objective functions, however, do not always strongly correlate with a listener's assessment of perceptual quality, so optimizing with these measures often results in poorer performance in real-world scenarios. In this work, we propose an attention-based enhancement approach that uses learned speech embedding vectors from a mean-opinion score (MOS) prediction model and a speech enhancement module to jointly enhance noisy speech. The MOS prediction model estimates the perceptual MOS of speech quality, as assessed by human listeners, directly from the audio signal. The enhancement module also employs a quantized language model that enforces spectral constraints for better speech realism and performance. We train the model using real-world noisy speech data that has been captured in everyday environments and test it using unseen corpora. The results show that our proposed approach significantly outperforms other approaches that are optimized with objective measures, where the predicted quality scores strongly correlate with human judgments.Comment: 11 pages, 4 figures, 3 tables, submitted in journal TASLP 202

    Deep neural network techniques for monaural speech enhancement: state of the art analysis

    Full text link
    Deep neural networks (DNN) techniques have become pervasive in domains such as natural language processing and computer vision. They have achieved great success in these domains in task such as machine translation and image generation. Due to their success, these data driven techniques have been applied in audio domain. More specifically, DNN models have been applied in speech enhancement domain to achieve denosing, dereverberation and multi-speaker separation in monaural speech enhancement. In this paper, we review some dominant DNN techniques being employed to achieve speech separation. The review looks at the whole pipeline of speech enhancement from feature extraction, how DNN based tools are modelling both global and local features of speech and model training (supervised and unsupervised). We also review the use of speech-enhancement pre-trained models to boost speech enhancement process. The review is geared towards covering the dominant trends with regards to DNN application in speech enhancement in speech obtained via a single speaker.Comment: conferenc

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Audio Processing and Loudness Estimation Algorithms with iOS Simulations

    Get PDF
    abstract: The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters from human auditory models, such as auditory patterns and loudness, involves computationally intensive operations which can strain device resources. Hence, strategies for implementing computationally efficient human auditory models for loudness estimation have been studied in this thesis. Existing algorithms for reducing computations in auditory pattern and loudness estimation have been examined and improved algorithms have been proposed to overcome limitations of these methods. In addition, real-time applications such as perceptual loudness estimation and loudness equalization using auditory models have also been implemented. A software implementation of loudness estimation on iOS devices is also reported in this thesis. In addition to the loudness estimation algorithms and software, in this thesis project we also created new illustrations of speech and audio processing concepts for research and education. As a result, a new suite of speech/audio DSP functions was developed and integrated as part of the award-winning educational iOS App 'iJDSP." These functions are described in detail in this thesis. Several enhancements in the architecture of the application have also been introduced for providing the supporting framework for speech/audio processing. Frame-by-frame processing and visualization functionalities have been developed to facilitate speech/audio processing. In addition, facilities for easy sound recording, processing and audio rendering have also been developed to provide students, practitioners and researchers with an enriched DSP simulation tool. Simulations and assessments have been also developed for use in classes and training of practitioners and students.Dissertation/ThesisM.S. Electrical Engineering 201

    Neurocognitive Mechanisms of Synesthesia

    Get PDF
    SummarySynesthesia is a condition in which stimulation of one sensory modality causes unusual experiences in a second, unstimulated modality. Although long treated as a curiosity, recent research with a combination of phenomenological, behavioral, and neuroimaging methods has begun to identify the cognitive and neural basis of synesthesia. Here, we review this literature with an emphasis on grapheme-color synesthesia, in which viewing letters and numbers induces the perception of colors. We discuss both the substantial progress that has been made in the past fifteen years and some open questions. In particular, we focus on debates in the field relating to the neural basis of synesthesia, including the relationship between synesthesia and attention and the role of meaning in synesthetic colors. We propose that some, but probably not all, of these differences can be accounted for by differences in the synesthetes studied and discuss some methodological implications of these individual differences
    corecore