955 research outputs found

    Bio-signal based control in assistive robots: a survey

    Get PDF
    Recently, bio-signal based control has been gradually deployed in biomedical devices and assistive robots for improving the quality of life of disabled and elderly people, among which electromyography (EMG) and electroencephalography (EEG) bio-signals are being used widely. This paper reviews the deployment of these bio-signals in the state of art of control systems. The main aim of this paper is to describe the techniques used for (i) collecting EMG and EEG signals and diving these signals into segments (data acquisition and data segmentation stage), (ii) dividing the important data and removing redundant data from the EMG and EEG segments (feature extraction stage), and (iii) identifying categories from the relevant data obtained in the previous stage (classification stage). Furthermore, this paper presents a summary of applications controlled through these two bio-signals and some research challenges in the creation of these control systems. Finally, a brief conclusion is summarized

    Intelligent artificial ants based feature extraction from wavelet packet coefficients for biomedical signal classification

    Full text link
    In this paper, a new feature extraction method utilizing ant colony optimization in the selection of wavelet packet transform (WPT) best basis is presented and adopted in classifying biomedical signals. The new algorithm, termed Intelligent Artificial Ants (IAA), searches the wavelet packet tree for subsets of features that best interact together to produce high classification accuracies. While traversing the WPT tree, the IAA takes into account existing correlation between features thus avoiding information redundancy. The IAA method is a mixture of filter and wrapper approaches in feature subset selection. The pheromone that the ants lay down is updated by means of an estimation of the information contents of a single feature or feature subset. The significance of the subsets selected by the ants is measured using linear discriminant analysis (LDA) classifier. The IAA method is tested on one of the most important biosignal driven applications, which is the Brain Computer Interface (BCI) problem with 56 EEG channels. Practical results indicate the significance of the proposed method achieving a maximum accuracy of 83%. ©2008 IEEE

    A Hierarchical Meta-model for Multi-Class Mental Task Based Brain-Computer Interfaces

    Get PDF
    In the last few years, many research works have been suggested on Brain- Computer Interface (BCI), which assists severely physically disabled persons to communicate directly with the help of electroencephalogram (EEG) signal, generated by the thought process of the brain. Thought generation inside the brain is a dynamic process, and plenty thoughts occur within a small time window. Thus, there is a need for a BCI device that can distinguish these various ideas simultaneously. In this research work, our previous binary-class mental task classication has been extended to the multi-class mental task problem. The present work proposed a novel feature construction scheme for multi mental task classication. In the proposed method, features ar

    Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease

    Get PDF
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    Discrete wavelet packet transform for electroencephalogram based valence-arousal emotion recognition

    Get PDF
    Electroencephalogram (EEG) based emotion recognition has received considerable attention as it is a non-invasive method of acquiring physiological signals from the brain and it could directly reflect emotional states. However, the challenging issues regarding EEG-based emotional state recognition is that it requires well-designed methods and algorithms to extract necessary features from the complex, chaotic, and multichannel EEG signal in order to achieve optimum classification performance. The aim of this study is to discover the feature extraction method and the combination of electrode channels that optimally implements EEG-based valencearousal emotion recognition. Based on this, two emotion recognition experiments were performed to classify human emotional states into high/low valence or high/low arousal. The first experiment was aimed to evaluate the performance of Discrete Wavelet Packet Transform (DWPT) as a feature extraction method. The second experiment was aimed at identifying the combination of electrode channels that optimally recognize emotions based on the valence-arousal model in EEG emotion recognition. In order to evaluate the results of this study, a benchmark EEG dataset was used to implement the emotion classification. In the first experiment, the entropy features of the theta, alpha, beta, and gamma bands through the 10 EEG channels Fp1, Fp2, F3, F4, T7, T8, P3, P4, O1, and O2 were extracted using DWPT and Radial Basis Function-Support Vector Machine (RBF-SVM) was used as the classifier. In the second experiment, the classification experiments were repeated using the 4 EEG frontal channels Fp1, Fp2, F3, and F4. The result of the first experiment showed that entropy features extracted using DWPT are better than bandpower features. While the result of the second classification experiment shows that the combination of the 4 frontal channels is more significant than the combination of the 10 channel

    Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Analysis

    Full text link
    An electroencephalography (EEG) based brain activity recognition is a fundamental field of study for a number of significant applications such as intention prediction, appliance control, and neurological disease diagnosis in smart home and smart healthcare domains. Existing techniques mostly focus on binary brain activity recognition for a single person, which limits their deployment in wider and complex practical scenarios. Therefore, multi-person and multi-class brain activity recognition has obtained popularity recently. Another challenge faced by brain activity recognition is the low recognition accuracy due to the massive noises and the low signal-to-noise ratio in EEG signals. Moreover, the feature engineering in EEG processing is time-consuming and highly re- lies on the expert experience. In this paper, we attempt to solve the above challenges by proposing an approach which has better EEG interpretation ability via raw Electroencephalography (EEG) signal analysis for multi-person and multi-class brain activity recognition. Specifically, we analyze inter-class and inter-person EEG signal characteristics, based on which to capture the discrepancy of inter-class EEG data. Then, we adopt an Autoencoder layer to automatically refine the raw EEG signals by eliminating various artifacts. We evaluate our approach on both a public and a local EEG datasets and conduct extensive experiments to explore the effect of several factors (such as normalization methods, training data size, and Autoencoder hidden neuron size) on the recognition results. The experimental results show that our approach achieves a high accuracy comparing to competitive state-of-the-art methods, indicating its potential in promoting future research on multi-person EEG recognition.Comment: 10 page

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    CES-513 Stages for Developing Control Systems using EMG and EEG Signals: A survey

    Get PDF
    Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG (Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of disabled and elderly people. This technical report aims to review the current deployment of these state of the art control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.

    Identification of ERD using Fuzzy Inference Systems for Brain-Computer Interface

    Get PDF
    A Brain-Computer Interface uses measurements of scalp electric potential (electroencephalography - EEG) reflecting brain activity, to communicate with external devices. Recent developments in electronics and computer sciences have enabled applications that may help users with disabilities and also to develop new types of Human Machine Interfaces. By producing modifications in their brain potential activity, the users can perform control of different devices. In order to perform actions, this EEG signals must be processed with proper algorithms. Our approach is based on a fuzzy inference system used to produce sharp control states from noisy EEG data
    • …
    corecore