43 research outputs found

    Frequent Subgraph Mining in Outerplanar Graphs

    Get PDF
    In recent years there has been an increased interest in frequent pattern discovery in large databases of graph structured objects. While the frequent connected subgraph mining problem for tree datasets can be solved in incremental polynomial time, it becomes intractable for arbitrary graph databases. Existing approaches have therefore resorted to various heuristic strategies and restrictions of the search space, but have not identified a practically relevant tractable graph class beyond trees. In this paper, we define the class of so called tenuous outerplanar graphs, a strict generalization of trees, develop a frequent subgraph mining algorithm for tenuous outerplanar graphs that works in incremental polynomial time, and evaluate the algorithm empirically on the NCI molecular graph dataset

    Frequent Subgraph Mining in Outerplanar Graphs

    Get PDF
    In recent years there has been an increased interest in frequent pattern discovery in large databases of graph structured objects. While the frequent connected subgraph mining problem for tree datasets can be solved in incremental polynomial time, it becomes intractable for arbitrary graph databases. Existing approaches have therefore resorted to various heuristic strategies and restrictions of the search space, but have not identified a practically relevant tractable graph class beyond trees. In this paper, we define the class of so called tenuous outerplanar graphs, a strict generalization of trees, develop a frequent subgraph mining algorithm for tenuous outerplanar graphs that works in incremental polynomial time, and evaluate the algorithm empirically on the NCI molecular graph dataset

    Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

    Get PDF
    The maximum common subtree isomorphism problem asks for the largest possible isomorphism between subtrees of two given input trees. This problem is a natural restriction of the maximum common subgraph problem, which is NP{\sf NP}-hard in general graphs. Confining to trees renders polynomial time algorithms possible and is of fundamental importance for approaches on more general graph classes. Various variants of this problem in trees have been intensively studied. We consider the general case, where trees are neither rooted nor ordered and the isomorphism is maximum w.r.t. a weight function on the mapped vertices and edges. For trees of order nn and maximum degree Δ\Delta our algorithm achieves a running time of O(n2Δ)\mathcal{O}(n^2\Delta) by exploiting the structure of the matching instances arising as subproblems. Thus our algorithm outperforms the best previously known approaches. No faster algorithm is possible for trees of bounded degree and for trees of unbounded degree we show that a further reduction of the running time would directly improve the best known approach to the assignment problem. Combining a polynomial-delay algorithm for the enumeration of all maximum common subtree isomorphisms with central ideas of our new algorithm leads to an improvement of its running time from O(n6+Tn2)\mathcal{O}(n^6+Tn^2) to O(n3+TnΔ)\mathcal{O}(n^3+Tn\Delta), where nn is the order of the larger tree, TT is the number of different solutions, and Δ\Delta is the minimum of the maximum degrees of the input trees. Our theoretical results are supplemented by an experimental evaluation on synthetic and real-world instances

    Fast Parallel Algorithms for the Subgraph Homeomorphism & the Subgraph Isomorphism Problems for Classes of Planar Graphs

    Get PDF
    23 pagesWe consider the problems of subgraph homeomorphism with fixed pattern graph, recognition, and subgraph isomorphism for some classes of planar graphs. Following the results of Robertson and Seymour on forbidden minor characterization, we show that the problems of fixed subgraph homeomorphism and recognition for any family of planar graphs closed under minor taking are in NC (i.e., they can be solved by an algorithm running in poly-log time using polynomial number of processors). We also show that the related subgraph isomorphism problem for biconnected outerplanar ·graphs is in NC. This is the first example of a restriction of subgraph isomorphism to a non-trivial graph family admitting an NC algorith

    Efficient Frequent Subtree Mining Beyond Forests

    Get PDF
    A common paradigm in distance-based learning is to embed the instance space into some appropriately chosen feature space equipped with a metric and to define the dissimilarity between instances by the distance of their images in the feature space. If the instances are graphs, then frequent connected subgraphs are a well-suited pattern language to define such feature spaces. Identifying the set of frequent connected subgraphs and subsequently computing embeddings for graph instances, however, is computationally intractable. As a result, existing frequent subgraph mining algorithms either restrict the structural complexity of the instance graphs or require exponential delay between the output of subsequent patterns. Hence distance-based learners lack an efficient way to operate on arbitrary graph data. To resolve this problem, in this thesis we present a mining system that gives up the demand on the completeness of the pattern set to instead guarantee a polynomial delay between subsequent patterns. Complementing this, we devise efficient methods to compute the embedding of arbitrary graphs into the Hamming space spanned by our pattern set. As a result, we present a system that allows to efficiently apply distance-based learning methods to arbitrary graph databases. To overcome the computational intractability of the mining step, we consider only frequent subtrees for arbitrary graph databases. This restriction alone, however, does not suffice to make the problem tractable. We reduce the mining problem from arbitrary graphs to forests by replacing each graph by a polynomially sized forest obtained from a random sample of its spanning trees. This results in an incomplete mining algorithm. However, we prove that the probability of missing a frequent subtree pattern is low. We show empirically that this is true in practice even for very small sized forests. As a result, our algorithm is able to mine frequent subtrees in a range of graph databases where state-of-the-art exact frequent subgraph mining systems fail to produce patterns in reasonable time or even at all. Furthermore, the predictive performance of our patterns is comparable to that of exact frequent connected subgraphs, where available. The above method considers polynomially many spanning trees for the forest, while many graphs have exponentially many spanning trees. The number of patterns found by our mining algorithm can be negatively influenced by this exponential gap. We hence propose a method that can (implicitly) consider forests of exponential size, while remaining computationally tractable. This results in a higher recall for our incomplete mining algorithm. Furthermore, the methods extend the known positive results on the tractability of exact frequent subtree mining to a novel class of transaction graphs. We conjecture that the next natural extension of our results to a larger transaction graph class is at least as difficult as proving whether P = NP, or not. Regarding the graph embedding step, we apply a similar strategy as in the mining step. We represent a novel graph by a forest of its spanning trees and decide whether the frequent trees from the mining step are subgraph isomorphic to this forest. As a result, the embedding computation has one-sided error with respect to the exact subgraph isomorphism test but is computationally tractable. Furthermore, we show that we can leverage a partial order on the pattern set. This structure can be used to reduce the runtime of the embedding computation dramatically. For the special case of Jaccard-similarity between graph embeddings, a further substantial reduction of runtime can be achieved using min-hashing. The Jaccard-distance can be approximated using small sketch vectors that can be computed fast, again using the partial order on the tree patterns

    Comparing graphs

    Get PDF
    Graphs are a well-studied mathematical concept, which has become ubiquitous to represent structured data in many application domains like computer vision, social network analysis or chem- and bioinformatics. The ever-increasing amount of data in these domains requires to efficiently organize and extract information from large graph data sets. In this context techniques for comparing graphs are fundamental, e.g., in order to obtain meaningful similarity measures between graphs. These are a prerequisite for the application of a variety of data mining algorithms to the domain of graphs. Hence, various approaches to graph comparison evolved and are wide-spread in practice. This thesis is dedicated to two different strategies for comparing graphs: maximum common subgraph problems and graph kernels. We study maximum common subgraph problems, which are based on classical graph-theoretical concepts for graph comparison and are NP-hard in the general case. We consider variants of the maximum common subgraph problem in restricted graph classes, which are highly relevant for applications in cheminformatics. We develop a polynomial-time algorithm, which allows to compute a maximum common subgraph under block and bridge preserving isomorphism in series-parallel graphs. This generalizes the problem of computing maximum common biconnected subgraphs in series-parallel graphs. We show that previous approaches to this problem, which are based on the separators represented by standard graph decompositions, fail. We introduce the concept of potential separators to overcome this issue and use them algorithmically to solve the problem in series-parallel graphs. We present algorithms with improved bounds on running time for the subclass of outerplanar graphs. Finally, we establish a sufficient condition for maximum common subgraph variants to allow derivation of graph distance metrics. This leads to polynomial-time computable graph distance metrics in restricted graph classes. This progress constitutes a step towards solving practically relevant maximum common subgraph problems in polynomial time. The second contribution of this thesis is to graph kernels, which have their origin in specific data mining algorithms. A key property of graph kernels is that they allow to consider a large (possibly infinite) number of features and can support graphs with arbitrary annotation, while being efficiently computable. The main contributions of this part of the thesis are (i) the development of novel graph kernels, which are especially designed for attributed graphs with arbitrary annotations and (ii) the systematic study of implicit and explicit mapping into a feature space for computation of graph kernels w.r.t. its impact on the running time and the ability to consider arbitrary annotations. We propose graph kernels based on bijections between subgraphs and walks of fixed length. In an experimental study we show that these approaches provide a viable alternative to known techniques, in particular for graphs with complex annotations

    A characterization of horizontal visibility graphs and combinatorics on words

    Get PDF
    An Horizontal Visibility Graph (for short, HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos [B. Luque, et al., Phys. Rev. E 80 (2009), 046103]. We prove that a graph is an HVG if and only if outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics [P. Flajolet and M. Noy, Discrete Math., 204 (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm. Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique we determine asymptotically the average number of edges of HVGs.Comment: 6 page

    Constrained Planarity and Augmentation Problems

    Get PDF
    A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex m in T corresponds to a subset of the vertices of the graph called ``cluster''. c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown by Dahlhaus, Eades, Feng, Cohen that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In the first part of the thesis, we provide a polynomial time algorithms for c-planarity testing of specific planar clustered graphs: Graphs for which - all nodes corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings in T are connected, - for all clusters m G-G(m) is connected. The algorithms are based on the concepts for the subgraph induced planar connectivity augmentation problem, also presented in this thesis. Furthermore, we give some characterizations of c-planar clustered graphs using minors and dual graphs and introduce a c-planar augmentation method. Parts II deals with edge deletion and bimodal crossing minimization. We prove that the maximum planar subgraph problem remains NP-complete even for non-planar graphs without a minor isomorphic to either K(5) or K(3,3), respectively. Further, we investigate the problem of finding a minimum weighted set of edges whose removal results in a graph without minors that are contractible onto a prespecified set of vertices. Finally, we investigate the problem of drawing a directed graph in two dimensions with a minimal number of crossings such that for every node the incoming and outgoing edges are separated consecutively in the cyclic adjacency lists. It turns out that the planarization method can be adapted such that the number of crossings can be expected to grow only slightly for practical instances
    corecore