341 research outputs found

    Characterization of L1-norm Statistic for Anomaly Detection in Erdos Renyi Graphs

    Get PDF
    International audienceWe devise statistical tests to detect the presence of an embedded Erdos-Renyi (ER) subgraph inside a random graph, which is also an ER graph. We make use of properties of the asymptotic distribution of eigenvectors of random graphs to detect the subgraph. This problem is related to the planted clique problem that is of considerable interest

    A spectral method for community detection in moderately-sparse degree-corrected stochastic block models

    Full text link
    We consider community detection in Degree-Corrected Stochastic Block Models (DC-SBM). We propose a spectral clustering algorithm based on a suitably normalized adjacency matrix. We show that this algorithm consistently recovers the block-membership of all but a vanishing fraction of nodes, in the regime where the lowest degree is of order log(n)(n) or higher. Recovery succeeds even for very heterogeneous degree-distributions. The used algorithm does not rely on parameters as input. In particular, it does not need to know the number of communities

    Testing Cluster Structure of Graphs

    Full text link
    We study the problem of recognizing the cluster structure of a graph in the framework of property testing in the bounded degree model. Given a parameter ε\varepsilon, a dd-bounded degree graph is defined to be (k,ϕ)(k, \phi)-clusterable, if it can be partitioned into no more than kk parts, such that the (inner) conductance of the induced subgraph on each part is at least ϕ\phi and the (outer) conductance of each part is at most cd,kε4ϕ2c_{d,k}\varepsilon^4\phi^2, where cd,kc_{d,k} depends only on d,kd,k. Our main result is a sublinear algorithm with the running time O~(npoly(ϕ,k,1/ε))\widetilde{O}(\sqrt{n}\cdot\mathrm{poly}(\phi,k,1/\varepsilon)) that takes as input a graph with maximum degree bounded by dd, parameters kk, ϕ\phi, ε\varepsilon, and with probability at least 23\frac23, accepts the graph if it is (k,ϕ)(k,\phi)-clusterable and rejects the graph if it is ε\varepsilon-far from (k,ϕ)(k, \phi^*)-clusterable for ϕ=cd,kϕ2ε4logn\phi^* = c'_{d,k}\frac{\phi^2 \varepsilon^4}{\log n}, where cd,kc'_{d,k} depends only on d,kd,k. By the lower bound of Ω(n)\Omega(\sqrt{n}) on the number of queries needed for testing graph expansion, which corresponds to k=1k=1 in our problem, our algorithm is asymptotically optimal up to polylogarithmic factors.Comment: Full version of STOC 201
    corecore