23 research outputs found

    Subgraph densities in signed graphons and the local Sidorenko conjecture

    Get PDF
    We prove inequalities between the densities of various bipartite subgraphs in signed graphs and graphons. One of the main inequalities is that the density of any bipartite graph with girth r cannot exceed the density of the r-cycle. This study is motivated by Sidorenko's conjecture, which states that the density of a bipartite graph F with m edges in any graph G is at least the m-th power of the edge density of G. Another way of stating this is that the graph G with given edge density minimizing the number of copies of F is, asymptotically, a random graph. We prove that this is true locally, i.e., for graphs G that are "close" to a random graph.Comment: 20 page

    An approximate version of Sidorenko's conjecture

    Get PDF
    A beautiful conjecture of Erd\H{o}s-Simonovits and Sidorenko states that if H is a bipartite graph, then the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density. This conjecture also has an equivalent analytic form and has connections to a broad range of topics, such as matrix theory, Markov chains, graph limits, and quasirandomness. Here we prove the conjecture if H has a vertex complete to the other part, and deduce an approximate version of the conjecture for all H. Furthermore, for a large class of bipartite graphs, we prove a stronger stability result which answers a question of Chung, Graham, and Wilson on quasirandomness for these graphs.Comment: 12 page

    Cut distance identifying graphon parameters over weak* limits

    Full text link
    The theory of graphons comes with the so-called cut norm and the derived cut distance. The cut norm is finer than the weak* topology. Dole\v{z}al and Hladk\'y [Cut-norm and entropy minimization over weak* limits, J. Combin. Theory Ser. B 137 (2019), 232-263] showed, that given a sequence of graphons, a cut distance accumulation graphon can be pinpointed in the set of weak* accumulation points as a minimizer of the entropy. Motivated by this, we study graphon parameters with the property that their minimizers or maximizers identify cut distance accumulation points over the set of weak* accumulation points. We call such parameters cut distance identifying. Of particular importance are cut distance identifying parameters coming from subgraph densities, t(H,*). This concept is closely related to the emerging field of graph norms, and the notions of the step Sidorenko property and the step forcing property introduced by Kr\'al, Martins, Pach and Wrochna [The step Sidorenko property and non-norming edge-transitive graphs, J. Combin. Theory Ser. A 162 (2019), 34-54]. We prove that a connected graph is weakly norming if and only if it is step Sidorenko, and that if a graph is norming then it is step forcing. Further, we study convexity properties of cut distance identifying graphon parameters, and find a way to identify cut distance limits using spectra of graphons. We also show that continuous cut distance identifying graphon parameters have the "pumping property", and thus can be used in the proof of the the Frieze-Kannan regularity lemma.Comment: 48 pages, 3 figures. Correction when treating disconnected norming graphs, and a new section 3.2 on index pumping in the regularity lemm

    Common graphs with arbitrary chromatic number

    Full text link
    Ramsey's Theorem guarantees for every graph H that any 2-edge-coloring of a sufficiently large complete graph contains a monochromatic copy of H. In 1962, Erdos conjectured that the random 2-edge-coloring minimizes the number of monochromatic copies of K_k, and the conjecture was extended by Burr and Rosta to all graphs. In the late 1980s, the conjectures were disproved by Thomason and Sidorenko, respectively. A classification of graphs whose number of monochromatic copies is minimized by the random 2-edge-coloring, which are referred to as common graphs, remains a challenging open problem. If Sidorenko's Conjecture, one of the most significant open problems in extremal graph theory, is true, then every 2-chromatic graph is common, and in fact, no 2-chromatic common graph unsettled for Sidorenko's Conjecture is known. While examples of 3-chromatic common graphs were known for a long time, the existence of a 4-chromatic common graph was open until 2012, and no common graph with a larger chromatic number is known. We construct connected k-chromatic common graphs for every k. This answers a question posed by Hatami, Hladky, Kral, Norine and Razborov [Combin. Probab. Comput. 21 (2012), 734-742], and a problem listed by Conlon, Fox and Sudakov [London Math. Soc. Lecture Note Ser. 424 (2015), 49-118, Problem 2.28]. This also answers in a stronger form the question raised by Jagger, Stovicek and Thomason [Combinatorica 16, (1996), 123-131] whether there exists a common graph with chromatic number at least four.Comment: Updated to include reference to arXiv:2207.0942

    Common Pairs of Graphs

    Full text link
    A graph HH is said to be common if the number of monochromatic labelled copies of HH in a red/blue edge colouring of a large complete graph is asymptotically minimized by a random colouring with an equal proportion of each colour. We extend this notion to an asymmetric setting. That is, we define a pair (H1,H2)(H_1,H_2) of graphs to be (p,1−p)(p,1-p)-common if a particular linear combination of the density of H1H_1 in red and H2H_2 in blue is asymptotically minimized by a random colouring in which each edge is coloured red with probability pp and blue with probability 1−p1-p. We extend many of the results on common graphs to this asymmetric setting. In addition, we obtain several novel results for common pairs of graphs with no natural analogue in the symmetric setting. We also obtain new examples of common graphs in the classical sense and propose several open problems.Comment: 50 page

    Combinatorics

    Get PDF
    Combinatorics is a fundamental mathematical discipline which focuses on the study of discrete objects and their properties. The current workshop brought together researchers from diverse fields such as Extremal and Probabilistic Combinatorics, Discrete Geometry, Graph theory, Combiantorial Optimization and Algebraic Combinatorics for a fruitful interaction. New results, methods and developments and future challenges were discussed. This is a report on the meeting containing abstracts of the presentations and a summary of the problem session

    Sidorenko Hypergraphs and Random Tur\'an Numbers

    Full text link
    Let ex(Gn,pr,F)\mathrm{ex}(G_{n,p}^r,F) denote the maximum number of edges in an FF-free subgraph of the random rr-uniform hypergraph Gn,prG_{n,p}^r. Building on recent work of Conlon, Lee, and Sidorenko, we prove non-trivial lower bounds on ex(Gn,pr,F)\mathrm{ex}(G_{n,p}^r,F) whenever FF is not Sidorenko. This connection between Sidorenko's conjecture and random Tur\'an problems gives new lower bounds on ex(Gn,pr,F)\mathrm{ex}(G_{n,p}^r,F) whenever FF is not Sidorenko, and further allows us to bound how "far" from Sidorenko an rr-graph FF is whenever upper bounds for ex(Gn,pr,F)\mathrm{ex}(G_{n,p}^r,F) are known.Comment: 13 pages (+1 page Appendix), 1 figur
    corecore