800 research outputs found

    DANTE: Deep AlterNations for Training nEural networks

    Full text link
    We present DANTE, a novel method for training neural networks using the alternating minimization principle. DANTE provides an alternate perspective to traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convexity to cast training a neural network as a bi-quasi-convex optimization problem. We show that for neural network configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations effectively in this formulation. DANTE can also be extended to networks with multiple hidden layers. In experiments on standard datasets, neural networks trained using the proposed method were found to be promising and competitive to traditional backpropagation techniques, both in terms of quality of the solution, as well as training speed.Comment: 19 page

    Distributionally Robust Learning with Weakly Convex Losses: Convergence Rates and Finite-Sample Guarantees

    Full text link
    We consider a distributionally robust stochastic optimization problem and formulate it as a stochastic two-level composition optimization problem with the use of the mean--semideviation risk measure. In this setting, we consider a single time-scale algorithm, involving two versions of the inner function value tracking: linearized tracking of a continuously differentiable loss function, and SPIDER tracking of a weakly convex loss function. We adopt the norm of the gradient of the Moreau envelope as our measure of stationarity and show that the sample complexity of O(ε3)\mathcal{O}(\varepsilon^{-3}) is possible in both cases, with only the constant larger in the second case. Finally, we demonstrate the performance of our algorithm with a robust learning example and a weakly convex, non-smooth regression example
    corecore