704 research outputs found

    Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees

    Full text link
    Asynchronous distributed algorithms are a popular way to reduce synchronization costs in large-scale optimization, and in particular for neural network training. However, for nonsmooth and nonconvex objectives, few convergence guarantees exist beyond cases where closed-form proximal operator solutions are available. As most popular contemporary deep neural networks lead to nonsmooth and nonconvex objectives, there is now a pressing need for such convergence guarantees. In this paper, we analyze for the first time the convergence of stochastic asynchronous optimization for this general class of objectives. In particular, we focus on stochastic subgradient methods allowing for block variable partitioning, where the shared-memory-based model is asynchronously updated by concurrent processes. To this end, we first introduce a probabilistic model which captures key features of real asynchronous scheduling between concurrent processes; under this model, we establish convergence with probability one to an invariant set for stochastic subgradient methods with momentum. From the practical perspective, one issue with the family of methods we consider is that it is not efficiently supported by machine learning frameworks, as they mostly focus on distributed data-parallel strategies. To address this, we propose a new implementation strategy for shared-memory based training of deep neural networks, whereby concurrent parameter servers are utilized to train a partitioned but shared model in single- and multi-GPU settings. Based on this implementation, we achieve on average 1.2x speed-up in comparison to state-of-the-art training methods for popular image classification tasks without compromising accuracy

    Catalyst Acceleration for Gradient-Based Non-Convex Optimization

    Get PDF
    We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them on weakly convex objectives, which covers a large class of non-convex functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. These properties are achieved without assuming any knowledge about the convexity of the objective, by automatically adapting to the unknown weak convexity constant. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks

    Deterministic Nonsmooth Nonconvex Optimization

    Full text link
    We study the complexity of optimizing nonsmooth nonconvex Lipschitz functions by producing (δ,ϵ)(\delta,\epsilon)-stationary points. Several recent works have presented randomized algorithms that produce such points using O~(δ1ϵ3)\tilde O(\delta^{-1}\epsilon^{-3}) first-order oracle calls, independent of the dimension dd. It has been an open problem as to whether a similar result can be obtained via a deterministic algorithm. We resolve this open problem, showing that randomization is necessary to obtain a dimension-free rate. In particular, we prove a lower bound of Ω(d)\Omega(d) for any deterministic algorithm. Moreover, we show that unlike smooth or convex optimization, access to function values is required for any deterministic algorithm to halt within any finite time. On the other hand, we prove that if the function is even slightly smooth, then the dimension-free rate of O~(δ1ϵ3)\tilde O(\delta^{-1}\epsilon^{-3}) can be obtained by a deterministic algorithm with merely a logarithmic dependence on the smoothness parameter. Motivated by these findings, we turn to study the complexity of deterministically smoothing Lipschitz functions. Though there are efficient black-box randomized smoothings, we start by showing that no such deterministic procedure can smooth functions in a meaningful manner, resolving an open question. We then bypass this impossibility result for the structured case of ReLU neural networks. To that end, in a practical white-box setting in which the optimizer is granted access to the network's architecture, we propose a simple, dimension-free, deterministic smoothing that provably preserves (δ,ϵ)(\delta,\epsilon)-stationary points. Our method applies to a variety of architectures of arbitrary depth, including ResNets and ConvNets. Combined with our algorithm, this yields the first deterministic dimension-free algorithm for optimizing ReLU networks, circumventing our lower bound.Comment: This work supersedes arxiv:2209.12463 and arxiv:2209.10346[Section 3], with major additional result
    corecore