1,425 research outputs found

    A Polynomial Translation of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary Report

    Full text link
    Nested logic programs have recently been introduced in order to allow for arbitrarily nested formulas in the heads and the bodies of logic program rules under the answer sets semantics. Nested expressions can be formed using conjunction, disjunction, as well as the negation as failure operator in an unrestricted fashion. This provides a very flexible and compact framework for knowledge representation and reasoning. Previous results show that nested logic programs can be transformed into standard (unnested) disjunctive logic programs in an elementary way, applying the negation as failure operator to body literals only. This is of great practical relevance since it allows us to evaluate nested logic programs by means of off-the-shelf disjunctive logic programming systems, like DLV. However, it turns out that this straightforward transformation results in an exponential blow-up in the worst-case, despite the fact that complexity results indicate that there is a polynomial translation among both formalisms. In this paper, we take up this challenge and provide a polynomial translation of logic programs with nested expressions into disjunctive logic programs. Moreover, we show that this translation is modular and (strongly) faithful. We have implemented both the straightforward as well as our advanced transformation; the resulting compiler serves as a front-end to DLV and is publicly available on the Web.Comment: 10 pages; published in Proceedings of the 9th International Workshop on Non-Monotonic Reasonin

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    From Quantified CTL to QBF

    Get PDF
    QCTL extends the temporal logic CTL with quantifications over atomic propositions. This extension is known to be very expressive: QCTL allows us to express complex properties over Kripke structures (it is as expressive as MSO). Several semantics exist for the quantifications: here, we work with the structure semantics, where the extra propositions label the Kripke structure (and not its execution tree), and the model-checking problem is known to be PSPACE-complete in this framework. We propose a model-checking algorithm for QCTL based on a reduction to QBF. We consider several reduction strategies, and we compare them with a prototype (based on the SMT-solver Z3) on several examples

    Normalisation for Some Quite Interesting Many-Valued Logics

    Get PDF
    In this paper, we consider a set of quite interesting three- and four-valued logics and prove the normalisation theorem for their natural deduction formulations. Among the logics in question are the Logic of Paradox, First Degree Entailment, Strong Kleene logic, and some of their implicative extensions, including RM3 and RM3⊃. Also, we present a detailed version of Prawitz’s proof of Nelson’s logic N4 and its extension by intuitionist negation

    Model Checking as Static Analysis

    Get PDF

    LP, K3, and FDE as Substructural Logics

    Get PDF
    Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.
    • …
    corecore