266 research outputs found

    ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

    Get PDF
    De Berg et al. in [SICOMP 2020] gave an algorithmic framework for subexponential algorithms on geometric graphs with tight (up to ETH) running times. This framework is based on dynamic programming on graphs of weighted treewidth resulting in algorithms that use super-polynomial space. We introduce the notion of weighted treedepth and use it to refine the framework of de Berg et al. for obtaining polynomial space (with tight running times) on geometric graphs. As a result, we prove that for any fixed dimension d ≥ 2 on intersection graphs of similarly-sized fat objects many well-known graph problems including Independent Set, r-Dominating Set for constant r, Cycle Cover, Hamiltonian Cycle, Hamiltonian Path, Steiner Tree, Connected Vertex Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal are solvable in time 2^(n^{1-1/d}) and within polynomial space.publishedVersio

    Quantum algorithm for a generalized hidden shift problem

    Get PDF
    Consider the following generalized hidden shift problem: given a function f on {0,...,M − 1} × ZN promised to be injective for fixed b and satisfying f(b, x) = f(b + 1, x + s) for b = 0, 1,...,M − 2, find the unknown shift s ∈ ZN. For M = N, this problem is an instance of the abelian hidden subgroup problem, which can be solved efficiently on a quantum computer, whereas for M = 2, it is equivalent to the dihedral hidden subgroup problem, for which no efficient algorithm is known. For any fixed positive �, we give an efficient (i.e., poly(logN)) quantum algorithm for this problem provided M ≥ N^∈. The algorithm is based on the “pretty good measurement” and uses H. Lenstra’s (classical) algorithm for integer programming as a subroutine

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time

    Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions

    Get PDF
    A divide-and-conquer strategy based on variations of the Lipton-Tarjan planar separator theorem has been one of the most common approaches for solving planar graph problems for more than 20 years. We present a new framework for designing fast subexponential exact and parameterized algorithms on planar graphs. Our approach is based on geometric properties of planar branch decompositions obtained by Seymour & Thomas, combined with refined techniques of dynamic programming on planar graphs based on properties of non-crossing partitions. Compared to divide-and-conquer algorithms, the main advantages of our method are a) it is a generic method which allows to attack broad classes of problems; b) the obtained algorithms provide a better worst case analysis. To exemplify our approach we show how to obtain an O(26.903√n) time algorithm solving weighted HAMILTONIAN CYCLE. We observe how our technique can be used to solve PLANAR GRAPH TSP in time O(29.8594√n). Our approach can be used to design parameterized algorithms as well. For example we introduce the first 2O(√ k)nO(1) time algorithm for parameterized Planar k-cycle by showing that for a given k we can decide if a planar graph on n vertices has a cycle of length at least k in time O(213.6√kn + n3)

    A low-memory algorithm for finding short product representations in finite groups

    Get PDF
    We describe a space-efficient algorithm for solving a generalization of the subset sum problem in a finite group G, using a Pollard-rho approach. Given an element z and a sequence of elements S, our algorithm attempts to find a subsequence of S whose product in G is equal to z. For a random sequence S of length d log_2 n, where n=#G and d >= 2 is a constant, we find that its expected running time is O(sqrt(n) log n) group operations (we give a rigorous proof for d > 4), and it only needs to store O(1) group elements. We consider applications to class groups of imaginary quadratic fields, and to finding isogenies between elliptic curves over a finite field.Comment: 12 page
    corecore