449 research outputs found

    Counting unlabelled toroidal graphs with no K33-subdivisions

    Get PDF
    We provide a description of unlabelled enumeration techniques, with complete proofs, for graphs that can be canonically obtained by substituting 2-pole networks for the edges of core graphs. Using structure theorems for toroidal and projective-planar graphs containing no K33-subdivisions, we apply these techniques to obtain their unlabelled enumeration.Comment: 25 pages (some corrections), 4 figures (one figure added), 3 table

    Induced minors and well-quasi-ordering

    Get PDF
    A graph HH is an induced minor of a graph GG if it can be obtained from an induced subgraph of GG by contracting edges. Otherwise, GG is said to be HH-induced minor-free. Robin Thomas showed that K4K_4-induced minor-free graphs are well-quasi-ordered by induced minors [Graphs without K4K_4 and well-quasi-ordering, Journal of Combinatorial Theory, Series B, 38(3):240 -- 247, 1985]. We provide a dichotomy theorem for HH-induced minor-free graphs and show that the class of HH-induced minor-free graphs is well-quasi-ordered by the induced minor relation if and only if HH is an induced minor of the gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we proved two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding in [Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16(5):489--502, 1992] and for induced subgraphs by Peter Damaschke in [Induced subgraphs and well-quasi-ordering, Journal of Graph Theory, 14(4):427--435, 1990]

    Polytopality and Cartesian products of graphs

    Full text link
    We study the question of polytopality of graphs: when is a given graph the graph of a polytope? We first review the known necessary conditions for a graph to be polytopal, and we provide several families of graphs which satisfy all these conditions, but which nonetheless are not graphs of polytopes. Our main contribution concerns the polytopality of Cartesian products of non-polytopal graphs. On the one hand, we show that products of simple polytopes are the only simple polytopes whose graph is a product. On the other hand, we provide a general method to construct (non-simple) polytopal products whose factors are not polytopal.Comment: 21 pages, 10 figure

    Induced Minor Free Graphs: Isomorphism and Clique-width

    Full text link
    Given two graphs GG and HH, we say that GG contains HH as an induced minor if a graph isomorphic to HH can be obtained from GG by a sequence of vertex deletions and edge contractions. We study the complexity of Graph Isomorphism on graphs that exclude a fixed graph as an induced minor. More precisely, we determine for every graph HH that Graph Isomorphism is polynomial-time solvable on HH-induced-minor-free graphs or that it is GI-complete. Additionally, we classify those graphs HH for which HH-induced-minor-free graphs have bounded clique-width. These two results complement similar dichotomies for graphs that exclude a fixed graph as an induced subgraph, minor, or subgraph.Comment: 16 pages, 5 figures. An extended abstract of this paper previously appeared in the proceedings of the 41st International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2015
    • …
    corecore