3,762 research outputs found

    Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces

    Get PDF
    We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff-Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the C1C^1 continuity property required for the Kirchhoff-Love formulation and are highly efficient for the acoustic field computations. We validate the proposed isogeometric formulation through a closed-form solution of acoustic scattering over a thin shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural-acoustic analysis of shells

    Exponential Splines and Pseudo-Splines: Generation versus reproduction of exponential polynomials

    Full text link
    Subdivision schemes are iterative methods for the design of smooth curves and surfaces. Any linear subdivision scheme can be identified by a sequence of Laurent polynomials, also called subdivision symbols, which describe the linear rules determining successive refinements of coarse initial meshes. One important property of subdivision schemes is their capability of exactly reproducing in the limit specific types of functions from which the data is sampled. Indeed, this property is linked to the approximation order of the scheme and to its regularity. When the capability of reproducing polynomials is required, it is possible to define a family of subdivision schemes that allows to meet various demands for balancing approximation order, regularity and support size. The members of this family are known in the literature with the name of pseudo-splines. In case reproduction of exponential polynomials instead of polynomials is requested, the resulting family turns out to be the non-stationary counterpart of the one of pseudo-splines, that we here call the family of exponential pseudo-splines. The goal of this work is to derive the explicit expressions of the subdivision symbols of exponential pseudo-splines and to study their symmetry properties as well as their convergence and regularity.Comment: 25 page
    • …
    corecore