1,074 research outputs found

    Multiscale Representations for Manifold-Valued Data

    Get PDF
    We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere S2S^2, the special orthogonal group SO(3)SO(3), the positive definite matrices SPD(n)SPD(n), and the Grassmann manifolds G(n,k)G(n,k). The representations are based on the deployment of Deslauriers--Dubuc and average-interpolating pyramids "in the tangent plane" of such manifolds, using the ExpExp and LogLog maps of those manifolds. The representations provide "wavelet coefficients" which can be thresholded, quantized, and scaled in much the same way as traditional wavelet coefficients. Tasks such as compression, noise removal, contrast enhancement, and stochastic simulation are facilitated by this representation. The approach applies to general manifolds but is particularly suited to the manifolds we consider, i.e., Riemannian symmetric spaces, such as Sn−1S^{n-1}, SO(n)SO(n), G(n,k)G(n,k), where the ExpExp and LogLog maps are effectively computable. Applications to manifold-valued data sources of a geometric nature (motion, orientation, diffusion) seem particularly immediate. A software toolbox, SymmLab, can reproduce the results discussed in this paper

    Subdivision schemes with general dilation in the geometric and nonlinear setting

    Get PDF
    AbstractWe establish results on convergence and smoothness of subdivision rules operating on manifold-valued data which are based on a general dilation matrix. In particular we cover irregular combinatorics. For the regular grid case results are not restricted to isotropic dilation matrices. The nature of the results is that intrinsic subdivision rules which operate on geometric data inherit smoothness properties of their linear counterparts

    A variational model for data fitting on manifolds by minimizing the acceleration of a B\'ezier curve

    Get PDF
    We derive a variational model to fit a composite B\'ezier curve to a set of data points on a Riemannian manifold. The resulting curve is obtained in such a way that its mean squared acceleration is minimal in addition to remaining close the data points. We approximate the acceleration by discretizing the squared second order derivative along the curve. We derive a closed-form, numerically stable and efficient algorithm to compute the gradient of a B\'ezier curve on manifolds with respect to its control points, expressed as a concatenation of so-called adjoint Jacobi fields. Several examples illustrate the capabilites and validity of this approach both for interpolation and approximation. The examples also illustrate that the approach outperforms previous works tackling this problem

    Local heights of toric varieties over non-archimedean fields

    Get PDF
    We generalize results about local heights previously proved in the case of discrete absolute values to arbitrary non-archimedean absolute values of rank 1. First, this is done for the induction formula of Chambert-Loir and Thuillier. Then we prove the formula of Burgos--Philippon--Sombra for the toric local height of a proper normal toric variety in this more general setting. We apply the corresponding formula for Moriwaki's global heights over a finitely generated field to a fibration which is generically toric. We illustrate the last result in a natural example where non-discrete non-archimedean absolute values really matter.Comment: 67 pages. v2: Assumption in Theorem 2.5.8 corrected to support function; other minor change
    • …
    corecore