48 research outputs found

    Acyclic edge coloring of graphs

    Full text link
    An {\em acyclic edge coloring} of a graph GG is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The {\em acyclic chromatic index} \chiup_{a}'(G) of a graph GG is the least number of colors needed in an acyclic edge coloring of GG. Fiam\v{c}\'{i}k (1978) conjectured that \chiup_{a}'(G) \leq \Delta(G) + 2, where Δ(G)\Delta(G) is the maximum degree of GG. This conjecture is well known as Acyclic Edge Coloring Conjecture (AECC). A graph GG with maximum degree at most κ\kappa is {\em κ\kappa-deletion-minimal} if \chiup_{a}'(G) > \kappa and \chiup_{a}'(H) \leq \kappa for every proper subgraph HH of GG. The purpose of this paper is to provide many structural lemmas on κ\kappa-deletion-minimal graphs. By using the structural lemmas, we firstly prove that AECC is true for the graphs with maximum average degree less than four (\autoref{NMAD4}). We secondly prove that AECC is true for the planar graphs without triangles adjacent to cycles of length at most four, with an additional condition that every 55-cycle has at most three edges contained in triangles (\autoref{NoAdjacent}), from which we can conclude some known results as corollaries. We thirdly prove that every planar graph GG without intersecting triangles satisfies \chiup_{a}'(G) \leq \Delta(G) + 3 (\autoref{NoIntersect}). Finally, we consider one extreme case and prove it: if GG is a graph with Δ(G)≥3\Delta(G) \geq 3 and all the 3+3^{+}-vertices are independent, then \chiup_{a}'(G) = \Delta(G). We hope the structural lemmas will shed some light on the acyclic edge coloring problems.Comment: 19 page

    Unsolved Problems in Spectral Graph Theory

    Full text link
    Spectral graph theory is a captivating area of graph theory that employs the eigenvalues and eigenvectors of matrices associated with graphs to study them. In this paper, we present a collection of 2020 topics in spectral graph theory, covering a range of open problems and conjectures. Our focus is primarily on the adjacency matrix of graphs, and for each topic, we provide a brief historical overview.Comment: v3, 30 pages, 1 figure, include comments from Clive Elphick, Xiaofeng Gu, William Linz, and Dragan Stevanovi\'c, respectively. Thanks! This paper will be published in Operations Research Transaction

    Measurements of edge uncolourability in cubic graphs

    Get PDF
    Philosophiae Doctor - PhDThe history of the pursuit of uncolourable cubic graphs dates back more than a century. This pursuit has evolved from the slow discovery of individual uncolourable cubic graphs such as the famous Petersen graph and the Blanusa snarks, to discovering in nite classes of uncolourable cubic graphs such as the Louphekine and Goldberg snarks, to investigating parameters which measure the uncolourability of cubic graphs. These parameters include resistance, oddness and weak oddness, ow resistance, among others. In this thesis, we consider current ideas and problems regarding the uncolourability of cubic graphs, centering around these parameters. We introduce new ideas regarding the structural complexity of these graphs in question. In particular, we consider their 3-critical subgraphs, speci cally in relation to resistance. We further introduce new parameters which measure the uncolourability of cubic graphs, speci cally relating to their 3-critical subgraphs and various types of cubic graph reductions. This is also done with a view to identifying further problems of interest. This thesis also presents solutions and partial solutions to long-standing open conjectures relating in particular to oddness, weak oddness and resistance
    corecore