2,205 research outputs found

    The strong global dimension of piecewise hereditary algebras

    Get PDF
    Let T be a tilting object in a triangulated category equivalent to the bounded derived category of a hereditary abelian category with finite dimensional homomorphism spaces and split idempotents. This text investigates the strong global dimension, in the sense of Ringel, of the endomorphism algebra of T. This invariant is expressed using the infimum of the lengths of the sequences of tilting objects successively related by tilting mutations and where the last term is T and the endomorphism algebra of the first term is quasi-tilted. It is also expressed in terms of the hereditary abelian generating subcategories of the triangulated category.Comment: Final published version. After refereeing, historical considerations were added and the length of the article was reduced: Introduction and Section 1 were reformulated; Subsection 2.1 was moved to Section 1 (with an abridged proof); Subsection 3.2 was reformulated (with an abridged proof); The proof in A.5 was rewritten (now shorter); And minor rewording was processed throughout the articl

    On multigraded generalizations of Kirillov-Reshetikhin modules

    Full text link
    We study the category of Z^l-graded modules with finite-dimensional graded pieces for certain Z+^l-graded Lie algebras. We also consider certain Serre subcategories with finitely many isomorphism classes of simple objects. We construct projective resolutions for the simple modules in these categories and compute the Ext groups between simple modules. We show that the projective covers of the simple modules in these Serre subcategories can be regarded as multigraded generalizations of Kirillov-Reshetikhin modules and give a recursive formula for computing their graded characters

    Towards a Convenient Category of Topological Domains

    Get PDF
    We propose a category of topological spaces that promises to be convenient for the purposes of domain theory as a mathematical theory for modelling computation. Our notion of convenience presupposes the usual properties of domain theory, e.g. modelling the basic type constructors, fixed points, recursive types, etc. In addition, we seek to model parametric polymorphism, and also to provide a flexible toolkit for modelling computational effects as free algebras for algebraic theories. Our convenient category is obtained as an application of recent work on the remarkable closure conditions of the category of quotients of countably-based topological spaces. Its convenience is a consequence of a connection with realizability models

    A Convenient Category of Domains

    Get PDF
    We motivate and define a category of "topological domains", whose objects are certain topological spaces, generalising the usual omegaomega-continuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, provides a model of parametric polymorphism, and can be used as the basis for a theory of computability. This answers a question of Gordon Plotkin, who asked whether it was possible to construct a category of domains combining such properties
    corecore