65 research outputs found

    Weighted Sum Rate Maximization for Downlink OFDMA with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper addresses a weighted sum rate (WSR) maximization problem for downlink OFDMA aided by a decode-and-forward (DF) relay under a total power constraint. A novel subcarrier-pair based opportunistic DF relaying protocol is proposed. Specifically, user message bits are transmitted in two time slots. A subcarrier in the first slot can be paired with a subcarrier in the second slot for the DF relay-aided transmission to a user. In particular, the source and the relay can transmit simultaneously to implement beamforming at the subcarrier in the second slot. Each unpaired subcarrier in either the first or second slot is used for the source's direct transmission to a user. A benchmark protocol, same as the proposed one except that the transmit beamforming is not used for the relay-aided transmission, is also considered. For each protocol, a polynomial-complexity algorithm is developed to find at least an approximately optimum resource allocation (RA), by using continuous relaxation, the dual method, and Hungarian algorithm. Instrumental to the algorithm design is an elegant definition of optimization variables, motivated by the idea of regarding the unpaired subcarriers as virtual subcarrier pairs in the direct transmission mode. The effectiveness of the RA algorithm and the impact of relay position and total power on the protocols' performance are illustrated by numerical experiments. The proposed protocol always leads to a maximum WSR equal to or greater than that for the benchmark one, and the performance gain of using the proposed one is significant especially when the relay is in close proximity to the source and the total power is low. Theoretical analysis is presented to interpret these observations.Comment: 8 figures, accepted and to be published in IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1301.293

    Analytical Evaluation of Chunk-Based Tractable Multi-cell OFDMA system

    Get PDF
    This paper evaluates thoroughly the performance of multi-cell OFDMA system. The two types of deployment in multi-cell OFDMA system, such as Strict Fractional Frequency Reuse (FFR) and Soft FFR (SFR) were evaluated. In order to model the base station locations, homogeneous Poisson point processes were used, i.e. tractable model instead of hexagonal grid was considered. In order to reduce complexity, chunk-based resource allocation scheme was embedded. Each cell divides the users into the users of the central cell area and the users of the cell edge area according to their average received Signal to Interference and Noise Ratio (SINR) compared with FFR threshold. The primary stage of the analysis includes the spectral efficiency’s expression deriving from these two deployment scenarios, followed by the analysis with the use of coverage probability. However, the improvement of spectral efficiency is achieved in the case of SFR. On the contrary, coverage probability is far improved by using strict FFR scheme. Through numerical anaysis, We have shown that the optimal FFR threshold to achieve the highest spectral efficiency was 12 dB for both Strict FFR as well as SFR

    Uplink Resource Management for Multiuser OFDM Video Transmission Systems: Analysis and Algorithm Design

    Get PDF
    We consider a multiuser OFDM system in which users want to transmit videos via a base station. The base station knows the channel state information (CSI) as well as the rate distortion (RD) information of the video streams and tries to allocate power and spectrum resources to the users according to both physical layer CSI and application layer RD information. We derive and analyze a condition for the optimal resource allocation solution in a continuous frequency response setting. The optimality condition for this cross layer optimization scenario is similar to the equal slope condition for conventional video multiplexing resource allocation. Based on our analysis, we design an iterative subcarrier assignment and power allocation algorithm for an uplink system, and provide numerical performance analysis with different numbers of users. Comparing to systems with either only physical layer or only application layer information available at the base station, our results show that the user capacity and the video PSNR performance can be increased significantly by using cross layer design. Bit-level simulations which take into account the imperfection of the video coding rate control, the variation of RD curve fitting, as well as channel errors, are presented

    Resource Allocation in Drone-Assisted Emergency Communication Systems

    Get PDF
    Due to low cost and high mobility, drones are considered important in emergency communications. In this thesis, we consider a unique drone assisted emergency communication system used in disaster scenarios, where the drone with limited power acts as a relay to improve the downlink sum rate through rational resource allocation. The wireless channel model between drones and ground users in emergency communications is different from conventional relay networks, while drones have their coverage area and data rate limits. Considering these specific characteristics, we formulate a joint power and subcarrier allocation problem to maximize data rate of users, which is limited by the transmit power budget per drone and the number of users on each subcarrier in emergency communications. However, resource allocation in a unique drone assisted emergency communication system is a nondeterministic polynomial time (NP)-hard problem requiring brute force search, which has prohibitive computational complexity. Instead, efficient algorithms that provide a good trade-off between system performance and implementation practicality are needed. The contributions of this thesis are proposing two different resource allocation schemes. Both schemes divide users into high-priority(HP) users and low-priority(LP) users and both guarantee minimum guaranteed rate for HP users. The first scheme is an adaptive algorithm with low complexity. In this scheme, a suboptimal solution is proposed by dividing users into two priority groups: HP users (rescuers) and LP users (affected people). This procedure achieves quasi-linear complexity in terms of the number of users. Finally, the data of the brute force search method and this method were collected through simulation experiments. The data shows that the data rate of the proposed scheme was very close to the optimal data rate when there was a lack of resources. The second scheme is an adaptive algorithm. In the proposed scheme, we formulate a joint power and subcarrier allocation problem to maximize data rate of users, which is limited by the transmit power budget per drone and the number of users on each subcarrier in emergency communications. Due to the intractability of the formulated problem, it is decomposed into two sub-problems: power allocation optimisation and subcarrier allocation optimization. Then a joint resource allocation algorithm is proposed. The simulation results show that the performance of the proposed method is close to that of the optimal solution but with much lower complexity
    corecore