2 research outputs found

    Joint Dimming Control and Optimal Power Allocation for THO-OFDM Visible Light Communications

    Get PDF
    Layered or hybrid optical orthogonal frequency division multiplexing (OFDM) has been proposed for use in optical communications due to its excellent spectral and power efficiencies, especially in visible light communications (VLC). However, most of the current works concentrate on transmitter and receiver design as well as the quality of service in communication networks. In this paper, we propose a spectrum-efficient dimmable triple-layer hybrid optical OFDM (DTH-OFDM) scheme to tackle the illumination requirements, considering different practical indoor VLC scenarios from low illumination to high illumination intensities. In the proposed DTH-OFDM scheme, the required dimming level is achieved by jointly adjusting the dimming factors and direct current bias. We investigate the comprehensive performance analysis of the proposed DTH-OFDM in detail, including probability density function, bit error rate (BER), spectral and energy efficiencies. In addition, a joint dimming control and optimal power allocation problem for DTH-OFDM is formulated and solved using convex optimization under the constraints of light emitting diode (LED) nonlinearity, dimming target and communications reliability. Numerical results show that, the proposed DTH-OFDM can offer continuous and arbitrary dimming target with higher spectral efficiency and lower BER compared with its counterparts, as well as an enhanced tolerance to the LED nonlinearity

    Spectrum and energy efficient digital modulation techniques for practical visible light communication systems

    Get PDF
    The growth in mobile data traffic is rapidly increasing in an unsustainable direction given the radio frequency (RF) spectrum limits. Visible light communication (VLC) offers a lucrative solution based on an alternative license-free frequency band that is safe to use and inexpensive to utilize. Improving the spectral and energy efficiency of intensity modulation and direct detection (IM/DD) systems is still an on-going challenge in VLC. The energy efficiency of inherently unipolar modulation techniques such as pulse-amplitude modulation discrete multitone modulation (PAM-DMT) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) degrades at high spectral efficiency. Two novel superposition modulation techniques are proposed in this thesis based on PAM-DMT and ACO-OFDM. In addition, a practical solution based on the computationally efficient augmented spectral efficiency discrete multi-tone (ASE-DMT) is proposed. The system performance of the proposed superposition modulation techniques offers significant electrical and optical power savings with up to 8 dB in the electrical signal-to-noise ratio (SNR) when compared with DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM). The theoretical bit error ratio (BER) performance bounds for all of the proposed modulation techniques are in agreement with the Monte-Carlo simulation results. The proposed superposition modulation techniques are promising candidates for spectrum and energy efficient IM/DD systems. Two experimental studies are presented for a VLC system based on DCO-OFDM with adaptive bit and energy loading. Micrometer-sized Gallium Nitride light emitting diode (m-LED) and light amplification by stimulated emission of radiation diode (LD) are used in these studies due to their high modulation bandwidth. Record data rates are achieved with a BER below the forward error correction (FEC) threshold at 7.91 Gb/s using the violet m-LED and at 15 Gb/s using the blue LD. These results highlight the potential of VLC systems in practical high speed communication solutions. An additional experimental study is demonstrated for the proposed superposition modulation techniques based on ASE-DMT. The experimentally achieved results confirm the theoretical and simulation based performance predictions of ASE-DMT. A significant gain of up to 17.33 dB in SNR is demonstrated at a low direct current (DC) bias. Finally, the perception that VLC systems cannot work under the presence of sunlight is addressed in this thesis. A complete framework is presented to evaluate the performance of VLC systems in the presence of solar irradiance at any given location and time. The effect of sunlight is investigated in terms of the degradations in SNR, data rate and BER. A reliable high speed communication system is achieved under the sunlight effect. An optical bandpass blue filter is shown to compensate for half of the reduced data rate in the presence of sunlight. This thesis demonstrates data rates above 1 Gb/s for a practical VLC link under strong solar illuminance measured at 50350 lux in clear weather conditions
    corecore