265 research outputs found

    A fully scalable wavelet video coding scheme with homologous inter-scale prediction

    Get PDF
    In this paper, we present a fully scalable wavelet-based video coding architecture called STP-Tool, in which motion-compensated temporal-filtered subbands of spatially scaled versions of a video sequence can be used as a base layer for inter-scale predictions. These predictions take place in a pyramidal closed-loop structure between homologous resolution data, i.e., without the need of spatial interpolation. The presented implementation of the STP-Tool architecture is based on the reference software of the Wavelet Video Coding MPEG Ad-Hoc Group. The STP-Tool architecture makes it possible to compensate for some of the typical drawbacks of current wavelet-based scalable video coding architectures and shows interesting objective and visual results even when compared with other wavelet-based or MPEG-4 AVC/H.264-based scalable video coding systems

    New prediction schemes for scalable wavelet video coding

    Get PDF
    A Scalable Video Coder (SVC) can be conceived according to different kinds of spatio-temporal decomposition structures which can be designed to produce a multiresolution spatio-temporal subband hierarchy which is then coded with a progressive or quality scalable coding technique [1-5]. A classification of SVC architectures has been suggested by the MPEG Ad-Hoc Group on SVC [6]. The so called t+2D schemes (one example is [2]) performs first an MCTF, producing temporal subband frames, then the spatial DWT is applied on each one of these frames. Alternatively, in a 2D+t scheme (one example is [7]), a spatial DWT is applied first to each video frame and then MCTF is made on spatial subbands. A third approach named 2D+t+2D uses a first stage DWT to produce reference video sequences at various resolutions; t+2D transforms are then performed on each resolution level of the obtained spatial pyramid. Each scheme has evidenced its pros and cons [8,9] in terms of coding performance. From a theoretical point of view, the critical aspects of the above SVC scheme mainly reside: i) in the coherence and trustworthiness of the motion estimation at various scales (especially for t+2D schemes); ii) in the difficulties to compensate for the shift-variant nature of the wavelet transform (especially for 2D+t schemes); iii) in the performance of inter-scale prediction (ISP) mechanisms (especially for 2D+t+2D schemes). In this document we recall the STool scheme principles, already presented in [10]. We present an STool SVC architecture and compare it with respect other SVC schemes. Some main advancements and new solutions are detailed and the related results presented. Our software implementations are based on the VidWav reference software [11,12]

    Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering

    Get PDF
    In this dissertation, a fully scalable video coding system is proposed. This system achieves full temporal, resolution, and fidelity scalability by combining mesh-based motion-compensated temporal filtering, multihypothesis motion compensation, and an embedded 3D wavelet-coefficient coder. The first major contribution of this work is the introduction of the redundant-wavelet multihypothesis paradigm into motion-compensated temporal filtering, which is achieved by deploying temporal filtering in the domain of a spatially redundant wavelet transform. A regular triangle mesh is used to track motion between frames, and an affine transform between mesh triangles implements motion compensation within a lifting-based temporal transform. Experimental results reveal that the incorporation of redundant-wavelet multihypothesis into mesh-based motion-compensated temporal filtering significantly improves the rate-distortion performance of the scalable coder. The second major contribution is the introduction of a sliding-window implementation of motion-compensated temporal filtering such that video sequences of arbitrarily length may be temporally filtered using a finite-length frame buffer without suffering from severe degradation at buffer boundaries. Finally, as a third major contribution, a novel 3D coder is designed for the coding of the 3D volume of coefficients resulting from the redundant-wavelet based temporal filtering. This coder employs an explicit estimate of the probability of coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple software implementation. Additionally, the coder offers the possibility of a high degree of vectorization particularly well suited to the data-parallel capabilities of modern general-purpose processors or customized hardware. Results show that the proposed coder yields nearly the same rate-distortion performance as a more complicated coefficient coder considered to be state of the art

    State-of-the-Art and Trends in Scalable Video Compression with Wavelet Based Approaches

    Get PDF
    3noScalable Video Coding (SVC) differs form traditional single point approaches mainly because it allows to encode in a unique bit stream several working points corresponding to different quality, picture size and frame rate. This work describes the current state-of-the-art in SVC, focusing on wavelet based motion-compensated approaches (WSVC). It reviews individual components that have been designed to address the problem over the years and how such components are typically combined to achieve meaningful WSVC architectures. Coding schemes which mainly differ from the space-time order in which the wavelet transforms operate are here compared, discussing strengths and weaknesses of the resulting implementations. An evaluation of the achievable coding performances is provided considering the reference architectures studied and developed by ISO/MPEG in its exploration on WSVC. The paper also attempts to draw a list of major differences between wavelet based solutions and the SVC standard jointly targeted by ITU and ISO/MPEG. A major emphasis is devoted to a promising WSVC solution, named STP-tool, which presents architectural similarities with respect to the SVC standard. The paper ends drawing some evolution trends for WSVC systems and giving insights on video coding applications which could benefit by a wavelet based approach.partially_openpartially_openADAMI N; SIGNORONI. A; R. LEONARDIAdami, Nicola; Signoroni, Alberto; Leonardi, Riccard

    Advanced Television Research Program

    Get PDF
    Contains an introduction and reports on twelve research projects.Advanced Television Research ProgramNational Science Foundation Grant MIP 87-14969National Science Foundation FellowshipKodak Fellowshi

    A Fully Scalable Video Coder with Inter-Scale Wavelet Prediction and Morphological Coding

    Get PDF
    In this paper a new fully scalable - wavelet based - video coding architecture is proposed, where motion compensated temporal filtered subbands of spatially scaled versions of a video sequence can be used as base layer for inter-scale predictions. These predictions take place between data at the same resolution level without the need of interpolation. The prediction residuals are further transformed by spatial wavelet decompositions. The resulting multi-scale spatiotemporal wavelet subbands are coded thanks to an embedded morphological dilation technique and context based arithmetic coding. Dyadic spatio-temporal scalability and progressive SNR scalability are achieved. Multiple adaptation decoding can be easily implemented without the need of knowing a predefined set of operating points. The proposed coding system allows to compensate some of the typical drawbacks of current wavelet based scalable video coding architectures and shows interesting visual results even when compared with the single operating point video coding standard AVC/H.264

    Advanced Television Research Program

    Get PDF
    Contains reports on ten research projects.National Science Foundation Grant MIP 87-14969National Science Foundation FellowshipAdvanced Television Research ProgramAT&T Bell Laboratories Doctoral Support ProgramKodak FellowshipU.S. Air Force - Electronic Systems Division Contract F1 9628-89-K-004

    Adaptive depletion for improvement of MPEG video compression

    Full text link
    Traditional data compression algorithms for 2D images work using the information theoretic paradigm, attempting to reduce redundant information by as much as possible. However, through the use of a depletion algorithm that takes advantage of characteristics of the human visual system, images can be displayed using only half or a quarter of the original information with no appreciable loss of quality.The characteristics of the human visual system that allows the viewer to perceive a higher rate of information than is actually displayed is known as the beta or picket fence effect. It is called the picket fence effect because its effect is noticeable when a person is travelling along a picket fence. Despite the person not having an unimpeded view of the objects behind the fence at any instant, as the person is moving, the objects behind the picket fence are clearly visible. In fact, in most cases the fence is hardly noticeable at all.The techniques we have developed uses this effect to achieve higher levels of compression than would otherwise be possible. As a fundamental characteristic of the beta effect is the requirement that there is movement of the fence in relation to the object, the beta effect can only be used in image sequences where movement between the depletion pattern and objects within the image can be achieved.As MPEG is the recognised standard by which image sequences are coded, compatibility with MPEG is essential. We have modified our technique such that it performs in conjunction with MPEG, providing further compression over MPEG.<br /

    Variable Block Size Motion Compensation In The Redundant Wavelet Domain

    Get PDF
    Video is one of the most powerful forms of multimedia because of the extensive information it delivers. Video sequences are highly correlated both temporally and spatially, a fact which makes the compression of video possible. Modern video systems employ motion estimation and motion compensation (ME/MC) to de-correlate a video sequence temporally. ME/MC forms a prediction of the current frame using the frames which have been already encoded. Consequently, one needs to transmit the corresponding residual image instead of the original frame, as well as a set of motion vectors which describe the scene motion as observed at the encoder. The redundant wavelet transform (RDWT) provides several advantages over the conventional wavelet transform (DWT). The RDWT overcomes the shift invariant problem in DWT. Moreover, RDWT retains all the phase information of wavelet coefficients and provides multiple prediction possibilities for ME/MC in wavelet domain. The general idea of variable size block motion compensation (VSBMC) technique is to partition a frame in such a way that regions with uniform translational motions are divided into larger blocks while those containing complicated motions into smaller blocks, leading to an adaptive distribution of motion vectors (MV) across the frame. The research proposed new adaptive partitioning schemes and decision criteria in RDWT that utilize more effectively the motion content of a frame in terms of various block sizes. The research also proposed a selective subpixel accuracy algorithm for the motion vector using a multiband approach. The selective subpixel accuracy reduces the computations produced by the conventional subpixel algorithm while maintaining the same accuracy. In addition, the method of overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Finally, the research extends the applications of the proposed VSBMC to the 3D video sequences. The experimental results obtained here have shown that VSBMC in the RDWT domain can be a powerful tool for video compression

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding
    corecore