35 research outputs found

    An investigation of delayless subband adaptive filtering for multi-input multi-output active noise control applications

    No full text
    The broadband control of noise and vibration using multi-input, multi-output (MIMO) active control systems has a potentially wide variety of applications. However, the performance of MIMO systems is often limited in practice by high computational demand and slow convergence speeds. In the somewhat simpler context of single-input, single- output broadband control, these problems have been overcome through a variety of methods including subband adaptive filtering. This paper presents an extension of the subband adaptive filtering technique to the MIMO active control problem and presents a comprehensive study of both the computational requirements and control performance. The implementation of the MIMO filtered-x LMS algorithm using subband adaptive filtering is described and the details of two specific implementations are presented. The computational demands of the two MIMO subband active control algorithms are then compared to that of the standard full-band algorithm. This comparison shows that as the number of subbands employed in the subband algorithms is increased, the computational demand is significantly reduced compared to the full-band implementation provided that a restructured analysis filter-bank is employed. An analysis of the convergence of the MIMO subband adaptive algorithm is then presented and this demonstrates that although the convergence of the control filter coefficients is dependent on the eigenvalue spread of the subband Hessian matrix, which reduces as the number of subbands is increased, the convergence of the cost function is limited for large numbers of subbands due to the simultaneous increase in the weight stacking distortion. The performance of the two MIMO subband algorithms and the standard full-band algorithm has then been assessed through a series of time-domain simulations of a practical active control system and it has been shown that the subband algorithms are able to achieve a significant increase in the convergence speed compared to the full-band implementatio

    Adaptive frequency domain identification for ANC systems using non-stationary signals

    Get PDF
    The problem of identification of secondary path in active noise control applications is dealt with fundamentally using time-domain adaptive filters. The use of adaptive frequency domain subband identification as an alternative has some significant advantages which are overlooked in such applications. In this paper two different delayless subband adaptive algorithms for identification of an unknown secondary path in an ANC framework are utilized and compared. Despite of reduced computational complexity and increase convergence rate this approach allows us to use non-stationary audio signals as the excitation input to avoid injection of annoying white noise. For this purpose two non-stationary music and speech signals are used for identification. The performances of the algorithms are measured in terms of minimum mean square error and convergence speed. The results are also compared to a fullband algorithm for the same scenario. The proposed delayless algorithms have a closed loop structure with DFT filterbanks as the analysis filter. To eliminate the delay in the signal path two different weights transformation schemes are compared

    A Novel Method for the Application of Adaptive filters for Active Noise Control System

    Get PDF
    This paper introduces one novel method for active noise control .Though use of filtered-X LMS FIR Adaptive Filter mature in the literature ,this expression illustrates the application of adaptive filters to the attenuation of acoustic noise via active noise control. The reference signal is a noisy version of the undesired sound measured near its source. We shall use a controller filter length of about 44 msec and a step size of 0.0001 for these signal statistics. The resulting algorithm converges after about 5 seconds of adaptation. We also realize adaptive algorithm using IIR filter with active noise to overcome the ability of acoustic feedback . The direct form IIR filter structure, which faces the difficulties of checking stability and of relatively slow convergence speed for noise composed of narrow band components with large power inequality. To overcome these difficulties along with using the direct form IIR filters filtered-u LMS algorithm is used

    Efficient Algorithms for Immersive Audio Rendering Enhancement

    Get PDF
    Il rendering audio immersivo è il processo di creazione di un’esperienza sonora coinvolgente e realistica nello spazio 3D. Nei sistemi audio immersivi, le funzioni di trasferimento relative alla testa (head-related transfer functions, HRTFs) vengono utilizzate per la sintesi binaurale in cuffia poiché esprimono il modo in cui gli esseri umani localizzano una sorgente sonora. Possono essere introdotti algoritmi di interpolazione delle HRTF per ridurre il numero di punti di misura e per creare un movimento del suono affidabile. La riproduzione binaurale può essere eseguita anche dagli altoparlanti. Tuttavia, il coinvolgimento di due o più gli altoparlanti causa il problema del crosstalk. In questo caso, algoritmi di cancellazione del crosstalk (CTC) sono necessari per eliminare i segnali di interferenza indesiderati. In questa tesi, partendo da un'analisi comparativa di metodi di misura delle HRTF, viene proposto un sistema di rendering binaurale basato sull'interpolazione delle HRTF per applicazioni in tempo reale. Il metodo proposto mostra buone prestazioni rispetto a una tecnica di riferimento. L'algoritmo di interpolazione è anche applicato al rendering audio immersivo tramite altoparlanti, aggiungendo un algoritmo di cancellazione del crosstalk fisso, che considera l'ascoltatore in una posizione fissa. Inoltre, un sistema di cancellazione crosstalk adattivo, che include il tracciamento della testa dell'ascoltatore, è analizzato e implementato in tempo reale. Il CTC adattivo implementa una struttura in sottobande e risultati sperimentali dimostrano che un maggiore numero di bande migliora le prestazioni in termini di errore totale e tasso di convergenza. Il sistema di riproduzione e le caratteristiche dell'ambiente di ascolto possono influenzare le prestazioni a causa della loro risposta in frequenza non ideale. L'equalizzazione viene utilizzata per livellare le varie parti dello spettro di frequenze che compongono un segnale audio al fine di ottenere le caratteristiche sonore desiderate. L'equalizzazione può essere manuale, come nel caso dell'equalizzazione grafica, dove il guadagno di ogni banda di frequenza può essere modificato dall'utente, o automatica, la curva di equalizzazione è calcolata automaticamente dopo la misurazione della risposta impulsiva della stanza. L'equalizzazione della risposta ambientale può essere applicata anche ai sistemi multicanale, che utilizzano due o più altoparlanti e la zona di equalizzazione può essere ampliata misurando le risposte impulsive in diversi punti della zona di ascolto. In questa tesi, GEQ efficienti e un sistema adattativo di equalizzazione d'ambiente. In particolare, sono proposti e approfonditi tre equalizzatori grafici a basso costo computazionale e a fase lineare e quasi lineare. Gli esperimenti confermano l'efficacia degli equalizzatori proposti in termini di accuratezza, complessità computazionale e latenza. Successivamente, una struttura adattativa in sottobande è introdotta per lo sviluppo di un sistema di equalizzazione d'ambiente multicanale. I risultati sperimentali verificano l'efficienza dell'approccio in sottobande rispetto al caso a banda singola. Infine, viene presentata una rete crossover a fase lineare per sistemi multicanale, mostrando ottimi risultati in termini di risposta in ampiezza, bande di transizione, risposta polare e risposta in fase. I sistemi di controllo attivo del rumore (ANC) possono essere progettati per ridurre gli effetti dell'inquinamento acustico e possono essere utilizzati contemporaneamente a un sistema audio immersivo. L'ANC funziona creando un'onda sonora in opposizione di fase rispetto all'onda sonora in arrivo. Il livello sonoro complessivo viene così ridotto grazie all'interferenza distruttiva. Infine, questa tesi presenta un sistema ANC utilizzato per la riduzione del rumore. L’approccio proposto implementa una stima online del percorso secondario e si basa su filtri adattativi in sottobande applicati alla stima del percorso primario che mirano a migliorare le prestazioni dell’intero sistema. La struttura proposta garantisce un tasso di convergenza migliore rispetto all'algoritmo di riferimento.Immersive audio rendering is the process of creating an engaging and realistic sound experience in 3D space. In immersive audio systems, the head-related transfer functions (HRTFs) are used for binaural synthesis over headphones since they express how humans localize a sound source. HRTF interpolation algorithms can be introduced for reducing the number of measurement points and creating a reliable sound movement. Binaural reproduction can be also performed by loudspeakers. However, the involvement of two or more loudspeakers causes the problem of crosstalk. In this case, crosstalk cancellation (CTC) algorithms are needed to delete unwanted interference signals. In this thesis, starting from a comparative analysis of HRTF measurement techniques, a binaural rendering system based on HRTF interpolation is proposed and evaluated for real-time applications. The proposed method shows good performance in comparison with a reference technique. The interpolation algorithm is also applied for immersive audio rendering over loudspeakers, by adding a fixed crosstalk cancellation algorithm, which assumes that the listener is in a fixed position. In addition, an adaptive crosstalk cancellation system, which includes the tracking of the listener's head, is analyzed and a real-time implementation is presented. The adaptive CTC implements a subband structure and experimental results prove that a higher number of bands improves the performance in terms of total error and convergence rate. The reproduction system and the characteristics of the listening room may affect the performance due to their non-ideal frequency response. Audio equalization is used to adjust the balance of different audio frequencies in order to achieve desired sound characteristics. The equalization can be manual, such as in the case of graphic equalization, where the gain of each frequency band can be modified by the user, or automatic, where the equalization curve is automatically calculated after the room impulse response measurement. The room response equalization can be also applied to multichannel systems, which employ two or more loudspeakers, and the equalization zone can be enlarged by measuring the impulse responses in different points of the listening zone. In this thesis, efficient graphic equalizers (GEQs), and an adaptive room response equalization system are presented. In particular, three low-complexity linear- and quasi-linear-phase graphic equalizers are proposed and deeply examined. Experiments confirm the effectiveness of the proposed GEQs in terms of accuracy, computational complexity, and latency. Successively, a subband adaptive structure is introduced for the development of a multichannel and multiple positions room response equalizer. Experimental results verify the effectiveness of the subband approach in comparison with the single-band case. Finally, a linear-phase crossover network is presented for multichannel systems, showing great results in terms of magnitude flatness, cutoff rates, polar diagram, and phase response. Active noise control (ANC) systems can be designed to reduce the effects of noise pollution and can be used simultaneously with an immersive audio system. The ANC works by creating a sound wave that has an opposite phase with respect to the sound wave of the unwanted noise. The additional sound wave creates destructive interference, which reduces the overall sound level. Finally, this thesis presents an ANC system used for noise reduction. The proposed approach implements an online secondary path estimation and is based on cross-update adaptive filters applied to the primary path estimation that aim at improving the performance of the whole system. The proposed structure allows for a better convergence rate in comparison with a reference algorithm

    Active vibration control systems in the frequency and sub-band domain.

    Get PDF
    Active noise and vibration control has been the subject of intense study in the last two decades due to the increased speed in digital signal processors and the technological development and manufacture of smart materials. This dissertation analyzes an active control system using adaptive digital signal processing techniques and applies it to the vibration reduction of hard disk drives (HDD). Specifically, this work focuses on the implementation of the adaptive algorithm in the frequency and sub-band domains for performance improvement.In this dissertation, selective adaptation in the frequency domain is proposed to alleviate the constructive interference associated with a feedback active control system. A new sub-band adaptive filter architecture without a signal path delay is proposed, and the associated adaptive algorithm is derived. This delayless sub-band algorithm can be applied to the active control systems to improve the convergence rate and trade-off the performance from the various sub-bands. The resulting side effect of the error path delay of the analysis filter bank is analyzed, and two compensation methods are proposed to increase the performance. The frequency domain method and the sub-band decomposition technique are then combined to improve the overall performance. The single-channel active control system is extended to the multiple-channel active control system to reduce the vibration of complex mechanical structure. The optimal performances of three variants of the feedback control system have been derived in terms of the correlation coefficients of the primary disturbances and the impulse responses of the secondary paths. Real time and simulation results are performed to verify the efficiency of the proposed algorithms and techniques

    A computationally efficient frequency-domain filtered-X LMS algorithm for virtual microphone

    Get PDF
    The computational complexity of the virtual FXLMS algorithm is higher than that of the conventional FXLMS algorithm. The additional complexity comes from computation of three secondary path transfer functions (as opposed to one) and a transfer function between the physical and the virtual microphones. The order of these transfer functions may be very high in practical situations where the acoustic damping is low. The high computational complexity of the virtual FXLMS algorithm imposes issues like high power consumption, making it difficult to implement the algorithm in battery operated ANC devices such as active headsets. In addition, the operating sampling frequency of the algorithm is limited and this in turn restricts its operation to relatively low frequency applications. In this paper, a new virtual FXLMS algorithm is derived by implementing all of the secondary path transfer functions in the frequency domain. The algorithm is simulated using measured transfer functions in a duct with low acoustic damping. Implementation schemes are proposed for the new frequency-domain virtual FXLMS algorithm, citing its advantages for use as an efficient real-time active noise control algorithm. © 2013 Elsevier Ltd.Debi Prasad Das, Danielle J. Moreau, Ben S.Cazzolat
    corecore