20 research outputs found

    Scalable video compression with optimized visual performance and random accessibility

    Full text link
    This thesis is concerned with maximizing the coding efficiency, random accessibility and visual performance of scalable compressed video. The unifying theme behind this work is the use of finely embedded localized coding structures, which govern the extent to which these goals may be jointly achieved. The first part focuses on scalable volumetric image compression. We investigate 3D transform and coding techniques which exploit inter-slice statistical redundancies without compromising slice accessibility. Our study shows that the motion-compensated temporal discrete wavelet transform (MC-TDWT) practically achieves an upper bound to the compression efficiency of slice transforms. From a video coding perspective, we find that most of the coding gain is attributed to offsetting the learning penalty in adaptive arithmetic coding through 3D code-block extension, rather than inter-frame context modelling. The second aspect of this thesis examines random accessibility. Accessibility refers to the ease with which a region of interest is accessed (subband samples needed for reconstruction are retrieved) from a compressed video bitstream, subject to spatiotemporal code-block constraints. We investigate the fundamental implications of motion compensation for random access efficiency and the compression performance of scalable interactive video. We demonstrate that inclusion of motion compensation operators within the lifting steps of a temporal subband transform incurs a random access penalty which depends on the characteristics of the motion field. The final aspect of this thesis aims to minimize the perceptual impact of visible distortion in scalable reconstructed video. We present a visual optimization strategy based on distortion scaling which raises the distortion-length slope of perceptually significant samples. This alters the codestream embedding order during post-compression rate-distortion optimization, thus allowing visually sensitive sites to be encoded with higher fidelity at a given bit-rate. For visual sensitivity analysis, we propose a contrast perception model that incorporates an adaptive masking slope. This versatile feature provides a context which models perceptual significance. It enables scene structures that otherwise suffer significant degradation to be preserved at lower bit-rates. The novelty in our approach derives from a set of "perceptual mappings" which account for quantization noise shaping effects induced by motion-compensated temporal synthesis. The proposed technique reduces wavelet compression artefacts and improves the perceptual quality of video

    Novel Motion Anchoring Strategies for Wavelet-based Highly Scalable Video Compression

    Full text link
    This thesis investigates new motion anchoring strategies that are targeted at wavelet-based highly scalable video compression (WSVC). We depart from two practices that are deeply ingrained in existing video compression systems. Instead of the commonly used block motion, which has poor scalability attributes, we employ piecewise-smooth motion together with a highly scalable motion boundary description. The combination of this more “physical” motion description together with motion discontinuity information allows us to change the conventional strategy of anchoring motion at target frames to anchoring motion at reference frames, which improves motion inference across time. In the proposed reference-based motion anchoring strategies, motion fields are mapped from reference to target frames, where they serve as prediction references; during this mapping process, disoccluded regions are readily discovered. Observing that motion discontinuities displace with foreground objects, we propose motion-discontinuity driven motion mapping operations that handle traditionally challenging regions around moving objects. The reference-based motion anchoring exposes an intricate connection between temporal frame interpolation (TFI) and video compression. When employed in a compression system, all anchoring strategies explored in this thesis perform TFI once all residual information is quantized to zero at a given temporal level. The interpolation performance is evaluated on both natural and synthetic sequences, where we show favourable comparisons with state-of-the-art TFI schemes. We explore three reference-based motion anchoring strategies. In the first one, the motion anchoring is “flipped” with respect to a hierarchical B-frame structure. We develop an analytical model to determine the weights of the different spatio-temporal subbands, and assess the suitability and benefits of this reference-based WSVC for (highly scalable) video compression. Reduced motion coding cost and improved frame prediction, especially around moving objects, result in improved rate-distortion performance compared to a target-based WSVC. As the thesis evolves, the motion anchoring is progressively simplified to one where all motion is anchored at one base frame; this central motion organization facilitates the incorporation of higher-order motion models, which improve the prediction performance in regions following motion with non-constant velocity

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Acta Cybernetica : Volume 14. Number 2.

    Get PDF

    Music-listening systems

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2000.Includes bibliographical references (p. [235]-248).When human listeners are confronted with musical sounds, they rapidly and automatically orient themselves in the music. Even musically untrained listeners have an exceptional ability to make rapid judgments about music from very short examples, such as determining the music's style, performer, beat, complexity, and emotional impact. However, there are presently no theories of music perception that can explain this behavior, and it has proven very difficult to build computer music-analysis tools with similar capabilities. This dissertation examines the psychoacoustic origins of the early stages of music listening in humans, using both experimental and computer-modeling approaches. The results of this research enable the construction of automatic machine-listening systems that can make human-like judgments about short musical stimuli. New models are presented that explain the perception of musical tempo, the perceived segmentation of sound scenes into multiple auditory images, and the extraction of musical features from complex musical sounds. These models are implemented as signal-processing and pattern-recognition computer programs, using the principle of understanding without separation. Two experiments with human listeners study the rapid assignment of high-level judgments to musical stimuli, and it is demonstrated that many of the experimental results can be explained with a multiple-regression model on the extracted musical features. From a theoretical standpoint, the thesis shows how theories of music perception can be grounded in a principled way upon psychoacoustic models in a computational-auditory-scene-analysis framework. Further, the perceptual theory presented is more relevant to everyday listeners and situations than are previous cognitive-structuralist approaches to music perception and cognition. From a practical standpoint, the various models form a set of computer signal-processing and pattern-recognition tools that can mimic human perceptual abilities on a variety of musical tasks such as tapping along with the beat, parsing music into sections, making semantic judgments about musical examples, and estimating the similarity of two pieces of music.Eric D. Scheirer.Ph.D
    corecore