6 research outputs found

    Subband Image Coding with Jointly Optimized Quantizers

    Get PDF
    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional

    Digital rights management (DRM) - watermark encoding scheme for JPEG images

    Get PDF
    The aim of this dissertation is to develop a new algorithm to embed a watermark in JPEG compressed images, using encoding methods. This encompasses the embedding of proprietary information, such as identity and authentication bitstrings, into the compressed material. This watermark encoding scheme involves combining entropy coding with homophonic coding, in order to embed a watermark in a JPEG image. Arithmetic coding was used as the entropy encoder for this scheme. It is often desired to obtain a robust digital watermarking method that does not distort the digital image, even if this implies that the image is slightly expanded in size before final compression. In this dissertation an algorithm that combines homophonic and arithmetic coding for JPEG images was developed and implemented in software. A detailed analysis of this algorithm is given and the compression (in number of bits) obtained when using the newly developed algorithm (homophonic and arithmetic coding). This research shows that homophonic coding can be used to embed a watermark in a JPEG image by using the watermark information for the selection of the homophones. The proposed algorithm can thus be viewed as a ‘key-less’ encryption technique, where an external bitstring is used as a ‘key’ and is embedded intrinsically into the message stream. The algorithm has achieved to create JPEG images with minimal distortion, with Peak Signal to Noise Ratios (PSNR) of above 35dB. The resulting increase in the entropy of the file is within the expected 2 bits per symbol. This research endeavor consequently provides a unique watermarking technique for images compressed using the JPEG standard.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer Engineeringunrestricte

    Development of Novel Image Compression Algorithms for Portable Multimedia Applications

    Get PDF
    Portable multimedia devices such as digital camera, mobile d evices, personal digtal assistants (PDAs), etc. have limited memory, battery life and processing power. Real time processing and transmission using these devices requires image compression algorithms that can compress efficiently with reduced complexity. Due to limited resources, it is not always possible to implement the best algorithms inside these devices. In uncompressed form, both raw and image data occupy an unreasonably large space. However, both raw and image data have a significant amount of statistical and visual redundancy. Consequently, the used storage space can be efficiently reduced by compression. In this thesis, some novel low complexity and embedded image compression algorithms are developed especially suitable for low bit rate image compression using these devices. Despite the rapid progress in the Internet and multimedia technology, demand for data storage and data transmission bandwidth continues to outstrip the capabil- ities of available technology. The browsing of images over In ternet from the image data sets using these devices requires fast encoding and decodin g speed with better rate-distortion performance. With progressive picture build up of the wavelet based coded images, the recent multimedia applications demand goo d quality images at the earlier stages of transmission. This is particularly important if the image is browsed over wireless lines where limited channel capacity, storage and computation are the deciding parameters. Unfortunately, the performance of JPEG codec degrades at low bit rates because of underlying block based DCT transforms. Altho ugh wavelet based codecs provide substantial improvements in progressive picture quality at lower bit rates, these coders do not fully exploit the coding performance at lower bit rates. It is evident from the statistics of transformed images that the number of significant coefficients having magnitude higher than earlier thresholds are very few. These wavelet based codecs code zero to each insignificant subband as it moves from coarsest to finest subbands. It is also demonstrated that there could be six to sev en bit plane passes where wavelet coders encode many zeros as many subbands are likely to be insignificant with respect to early thresholds. Bits indicating insignificance of a coefficient or subband are required, but they don’t code information that reduces distortion of the reconstructed image. This leads to reduction of zero distortion for an increase in non zero bit-rate. Another problem associated with wavelet based coders such as Set partitioning in hierarchical trees (SPIHT), Set partitioning embedded block (SPECK), Wavelet block-tree coding (WBTC) is because of the use of auxiliary lists. The size of list data structures increase exponentially as more and more eleme nts are added, removed or moved in each bitplane pass. This increases the dynamic memory requirement of the codec, which is a less efficient feature for hardware implementations. Later, many listless variants of SPIHT and SPECK, e.g. No list SPIHT (NLS) and Listless SPECK (LSK) respectively are developed. However, these algorithms have similar rate distortion performances, like the list based coders. An improved LSK (ILSK)algorithm proposed in this dissertation that improves the low b it rate performance of LSK by encoding much lesser number of symbols (i.e. zeros) to several insignificant subbands. Further, the ILSK is combined with a block based transform known as discrete Tchebichef transform (DTT). The proposed new coder isnamed as Hierar-chical listless DTT (HLDTT). DTT is chosen over DCT because of it’s similar energy compaction property like discrete cosine transform (DCT). It is demonstrated that the decoded image quality using HLDTT has better visual performance (i.e., Mean Structural Similarity) than the images decoded using DCT based embedded coders in most of the bit rates. The ILSK algorithm is also combined with Lift based wavelet tra nsform to show the superiority over JPEG2000 at lower rates in terms of peak signal-to-noise ratio (PSNR). A full-scalable and random access decodable listless algorithm is also developed which is based on lift based ILSK. The proposed algorithm named as scalable listless embedded block partitioning (S-LEBP) generates bit stream that offer increasing signal-to-noise ratio and spatial resolution. These are very useful features for transmission of images in a heterogeneous network that optimally service each user according to available bandwidth and computing needs. Random access decoding is a very useful feature for extracting/manipulating certain ar ea of an image with minimal decoding work. The idea used in ILSK is also extended to encode and decode color images. The proposed algorithm for coding color images is named as Color listless embedded block partitioning (CLEBP) algorithm. The coding efficiency of CLEBP is compared with Color SPIHT (CSPIHT) and color variant of WBTC algorithm. From the simulation results, it is shown that CLEBP exhibits a significant PSNR performance improvement over the later two algorithms on various types of images. Although many modifications to NLS and LSK have been made, the listless modification to WBTC algorithm has not been reported in the literature. Therefore,a listless variant of WBTC (named as LBTC) algorithm is proposed. LBTC not only reduces the memory requirement by 88-89% but also increases the encoding and decoding speed, while preserving the rate-distortion perform ance at the same time. Further, the combination of DCT with LBTC (named as DCT LBT) and DTT with LBTC (named as Hierarchical listless DTT, HLBTDTT) are compared with some state-of-the-art DCT based embedded coders. It is also shown that the proposed DCT-LBT and HLBT-DTT show significant PSNR improvements over almost all the embedded coders in most of the bit rates. In some multimedia applications e.g., digital camera, camco rders etc., the images always need to have a fixed pre-determined high quality. The extra effort required for quality scalability is wasted. Therefore, non-embedded algo rithms are best suited for these applications. The proposed algorithms can be made non-embedded by encoding a fixed set of bit planes at a time. Instead, a sparse orthogonal transform matrix is proposed, which can be integrated in a JEPG baseline coder. The proposed matrix promises a substantial reduction in hardware complexity with amarginal loss of image quality on a considerable range of bit rates than block based DCT or Integer DCT

    Exposing a waveform interface to the wireless channel for scalable video broadcast

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-167).Video broadcast and mobile video challenge the conventional wireless design. In broadcast and mobile scenarios the bit-rate supported by the channel differs across receivers and varies quickly over time. The conventional design however forces the source to pick a single bit-rate and degrades sharply when the channel cannot support it. This thesis presents SoftCast, a clean-slate design for wireless video where the source transmits one video stream that each receiver decodes to a video quality commensurate with its specific instantaneous channel quality. To do so, SoftCast ensures the samples of the digital video signal transmitted on the channel are linearly related to the pixels' luminance. Thus, when channel noise perturbs the transmitted signal samples, the perturbation naturally translates into approximation in the original video pixels. Hence, a receiver with a good channel (low noise) obtains a high fidelity video, and a receiver with a bad channel (high noise) obtains a low fidelity video. SoftCast's linear design in essence resembles the traditional analog approach to communication, which was abandoned in most major communication systems, as it does not enjoy the theoretical opimality of the digital separate design in point-topoint channels nor its effectiveness at compressing the source data. In this thesis, I show that in combination with decorrelating transforms common to modern digital video compression, the analog approach can achieve performance competitive with the prevalent digital design for a wide variety of practical point-to-point scenarios, and outperforms it in the broadcast and mobile scenarios. Since the conventional bit-pipe interface of the wireless physical layer (PHY) forces the separation of source and channel coding, to realize SoftCast, architectural changes to the wireless PHY are necessary. This thesis discusses the design of RawPHY, a reorganization of the PHY which exposes a waveform interface to the channel while shielding the designers of the higher layers from much of the perplexity of the wireless channel. I implement SoftCast and RawPHY using the GNURadio software and the USRP platform. Results from a 20-node testbed show that SoftCast improves the average video quality (i.e., PSNR) across diverse broadcast receivers in our testbed by up to 5.5 dB in comparison to conventional single- or multi-layer video. Even for a single receiver, it eliminates video glitches caused by mobility and increases robustness to packet loss by an order of magnitude.by Szymon Kazimierz Jakubczak.Ph.D

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    Compression et transmission d'images avec énergie minimale application aux capteurs sans fil

    Get PDF
    Un réseau de capteurs d'images sans fil (RCISF) est un réseau ad hoc formé d'un ensemble de noeuds autonomes dotés chacun d'une petite caméra, communiquant entre eux sans liaison filaire et sans l'utilisation d'une infrastructure établie, ni d'une gestion de réseau centralisée. Leur utilité semble majeure dans plusieurs domaines, notamment en médecine et en environnement. La conception d'une chaîne de compression et de transmission sans fil pour un RCISF pose de véritables défis. L'origine de ces derniers est liée principalement à la limitation des ressources des capteurs (batterie faible , capacité de traitement et mémoire limitées). L'objectif de cette thèse consiste à explorer des stratégies permettant d'améliorer l'efficacité énergétique des RCISF, notamment lors de la compression et de la transmission des images. Inéluctablement, l'application des normes usuelles telles que JPEG ou JPEG2000 est éner- givore, et limite ainsi la longévité des RCISF. Cela nécessite leur adaptation aux contraintes imposées par les RCISF. Pour cela, nous avons analysé en premier lieu, la faisabilité d'adapter JPEG au contexte où les ressources énergétiques sont très limitées. Les travaux menés sur cet aspect nous permettent de proposer trois solutions. La première solution est basée sur la propriété de compactage de l'énergie de la Transformée en Cosinus Discrète (TCD). Cette propriété permet d'éliminer la redondance dans une image sans trop altérer sa qualité, tout en gagnant en énergie. La réduction de l'énergie par l'utilisation des régions d'intérêts représente la deuxième solution explorée dans cette thèse. Finalement, nous avons proposé un schéma basé sur la compression et la transmission progressive, permettant ainsi d'avoir une idée générale sur l'image cible sans envoyer son contenu entier. En outre, pour une transmission non énergivore, nous avons opté pour la solution suivante. N'envoyer fiablement que les basses fréquences et les régions d'intérêt d'une image. Les hautes fréquences et les régions de moindre intérêt sont envoyées""infiablement"", car leur pertes n'altèrent que légèrement la qualité de l'image. Pour cela, des modèles de priorisation ont été comparés puis adaptés à nos besoins. En second lieu, nous avons étudié l'approche par ondelettes (wavelets ). Plus précisément, nous avons analysé plusieurs filtres d'ondelettes et déterminé les ondelettes les plus adéquates pour assurer une faible consommation en énergie, tout en gardant une bonne qualité de l'image reconstruite à la station de base. Pour estimer l'énergie consommée par un capteur durant chaque étape de la 'compression, un modèle mathématique est développé pour chaque transformée (TCD ou ondelette). Ces modèles, qui ne tiennent pas compte de la complexité de l'implémentation, sont basés sur le nombre d'opérations de base exécutées à chaque étape de la compression
    corecore