1,149 research outputs found

    Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm

    No full text
    Mapping the spatio-temporal characteristics of wetland inundation has an important significance to the study of wetland environment and associated flora and fauna. High temporal remote sensing imagery is widely used for this purpose with the limitations of relatively low spatial resolutions. In this study, a novel method based on integration of back-propagation neural network (BP) and genetic algorithm (GA), so-called IBPGA, is proposed for super-resolution mapping of wetland inundation (SMWI) from multispectral remote sensing imagery. The IBPGA-SMWI algorithm is developed, including the fitness function and integration search strategy. IBPGA-SMWI was evaluated using Landsat TM/ETM + imagery from the Poyanghu wetland in China and the Macquarie Marshes in Australia. Compared with traditional SMWI methods, IBPGA-SMWI consistently achieved more accurate super-resolution mapping results in terms of visual and quantitative evaluations. In comparison with GA-SMWI, IBPGA-SMWI not only improved the accuracy of SMWI, but also accelerated the convergence speed of the algorithm. The sensitivity analysis of IBPGA-SMWI in relation to standard crossover rate, BP crossover rate and mutation rate was also carried out to discuss the algorithm performance. It is hoped that the results of this study will enhance the application of median-low resolution remote sensing imagery in wetland inundation mapping and monitoring, and ultimately support the studies of wetland environment.This paper was supported by the National Natural Science Foundation of China (Grant No. 41371343 and Grant No. 41001255) and the scholarship provided by the China Scholarship Council (Grant No. 201308420290)

    Updating Landsat-based forest cover maps with MODIS images using multiscale spectral-spatial-temporal superresolution mapping

    Get PDF
    Abstract With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images

    An iterative interpolation deconvolution algorithm for superresolution land cover mapping

    Get PDF
    Super-resolution mapping (SRM) is a method to produce a fine spatial resolution land cover map from coarse spatial resolution remotely sensed imagery. A popular approach for SRM is a two-step algorithm, which first increases the spatial resolution of coarse fraction images by interpolation, and then determines class labels of fine resolution pixels using the maximum a posteriori (MAP) principle. By constructing a new image formation process that establishes the relationship between observed coarse resolution fraction images and the latent fine resolution land cover map, it is found that the MAP principle only matches with area-to-point interpolation algorithms, and should be replaced by de-convolution if an area-to-area interpolation algorithm is to be applied. A novel iterative interpolation de-convolution (IID) SRM algorithm is proposed. The IID algorithm first interpolates coarse resolution fraction images with an area-to-area interpolation algorithm, and produces an initial fine resolution land cover map by de-convolution. The fine spatial resolution land cover map is then updated by re-convolution, back-projection and de-convolution iteratively until the final result is produced. The IID algorithm was evaluated with simulated shapes, simulated multi-spectral images, and degraded Landsat images, including comparison against three widely used SRM algorithms: pixel swapping, bilinear interpolation, and Hopfield neural network. Results show that the IID algorithm can reduce the impact of fraction errors, and can preserve the patch continuity and the patch boundary smoothness, simultaneously. Moreover, the IID algorithm produced fine resolution land cover maps with higher accuracies than those produced by other SRM algorithms

    Spatial-temporal super-resolution land cover mapping with a local spatial-temporal dependence model

    Get PDF
    The mixed pixel problem is common in remote sensing. A soft classification can generate land cover class fraction images that illustrate the areal proportions of the various land cover classes within pixels. The spatial distribution of land cover classes within each mixed pixel is, however, not represented. Super-resolution land cover mapping (SRM) is a technique to predict the spatial distribution of land cover classes within the mixed pixel using fraction images as input. Spatial-temporal SRM (STSRM) extends the basic SRM to include a temporal dimension by using a finer-spatial resolution land cover map that pre-or postdates the image acquisition time as ancillary data. Traditional STSRM methods often use one land cover map as the constraint, but neglect the majority of available land cover maps acquired at different dates and of the same scene in reconstructing a full state trajectory of land cover changes when applying STSRM to time series data. In addition, the STSRM methods define the temporal dependence globally, and neglect the spatial variation of land cover temporal dependence intensity within images. A novel local STSRM (LSTSRM) is proposed in this paper. LSTSRM incorporates more than one available land cover map to constrain the solution, and develops a local temporal dependence model, in which the temporal dependence intensity may vary spatially. The results show that LSTSRM can eliminate speckle-like artifacts and reconstruct the spatial patterns of land cover patches in the resulting maps, and increase the overall accuracy compared with other STSRM methods

    Spatiotemporal subpixel mapping of time-series images

    Get PDF
    Land cover/land use (LCLU) information extraction from multitemporal sequences of remote sensing imagery is becoming increasingly important. Mixed pixels are a common problem in Landsat and MODIS images that are used widely for LCLU monitoring. Recently developed subpixel mapping (SPM) techniques can extract LCLU information at the subpixel level by dividing mixed pixels into subpixels to which hard classes are then allocated. However, SPM has rarely been studied for time-series images (TSIs). In this paper, a spatiotemporal SPM approach was proposed for SPM of TSIs. In contrast to conventional spatial dependence-based SPM methods, the proposed approach considers simultaneously spatial and temporal dependences, with the former considering the correlation of subpixel classes within each image and the latter considering the correlation of subpixel classes between images in a temporal sequence. The proposed approach was developed assuming the availability of one fine spatial resolution map which exists among the TSIs. The SPM of TSIs is formulated as a constrained optimization problem. Under the coherence constraint imposed by the coarse LCLU proportions, the objective is to maximize the spatiotemporal dependence, which is defined by blending both spatial and temporal dependences. Experiments on three data sets showed that the proposed approach can provide more accurate subpixel resolution TSIs than conventional SPM methods. The SPM results obtained from the TSIs provide an excellent opportunity for LCLU dynamic monitoring and change detection at a finer spatial resolution than the available coarse spatial resolution TSIs

    An Analysis of Urban Land use land cover (LULC) Changes in Lilongwe City, Central Malawi (2002–2022)

    Get PDF
    Lilongwe, Malawi’s capital city, has grown nearly tenfold in the last 40 years with a 4-5% annual population growth rate, and the city’s population is projected to double over the next decade. Rural to urban migration and natural increase are the driving factors of the city’s urban expansion. Characterised by the urbanisation of poverty, Lilongwe is experiencing uncontrolled and unplanned urban expansion that has led to the growth of informal settlements. Urbanisation leads to land use land cover (LULC) changes that negatively impact the quality of life and the environment. Lilongwe faces many challenges, including high levels of poverty, inequality, poorly built infrastructure, lack of access to safe sanitation and clean water, urban flooding, and poor waste disposal. Effective land use planning is important in mitigating future urbanisation\u27s adverse effects. To prepare and plan for the inevitable future urban growth of the city, studies of historical land use land cover changes are essential in understanding the urbanisation trajectory of the city. This study used post classification change detection and the SLEUTH urban growth model to analyse land use land cover changes in Lilongwe from 2002 to 2022. Results revealed that Lilongwe’s urban growth is characterised by the expansion of built area coverage within and on the edges of already existing urban clusters. While urban growth is apparent in all parts of the city, it is concentrated in the northwest, southwest, and southeast

    General solution to reduce the point spread function effect in subpixel mapping

    Get PDF
    The point spread function (PSF) effect is ubiquitous in remote sensing images and imposes a fundamental uncertainty on subpixel mapping (SPM). The crucial PSF effect has been neglected in existing SPM methods. This paper proposes a general model to reduce the PSF effect in SPM. The model is applicable to any SPM methods treating spectral unmixing as pre-processing. To demonstrate the advantages of the new technique it was necessary to develop a new approach for accuracy assessment of SPM. To-date, accuracy assessment for SPM has been limited to subpixel classification accuracy, ignoring the performance of reproducing spatial structure in downscaling. In this paper, a new accuracy index is proposed which considers SPM performances in classification and restoration of spatial structure simultaneously. Experimental results show that by considering the PSF effect, more accurate SPM results were produced and small-sized patches and elongated features were restored more satisfactorily. Moreover, using the novel accuracy index, the quantitative evaluation was found to be more consistent with visual evaluation. This paper, thus, addresses directly two of the longest standing challenges in SPM (i.e., the limitations of the PSF effect and accuracy assessment undertaken only on a subpixel-by-subpixel basis). © 2020 Elsevier Inc

    Principles and methods of scaling geospatial Earth science data

    Get PDF
    The properties of geographical phenomena vary with changes in the scale of measurement. The information observed at one scale often cannot be directly used as information at another scale. Scaling addresses these changes in properties in relation to the scale of measurement, and plays an important role in Earth sciences by providing information at the scale of interest, which may be required for a range of applications, and may be useful for inferring geographical patterns and processes. This paper presents a review of geospatial scaling methods for Earth science data. Based on spatial properties, we propose a methodological framework for scaling addressing upscaling, downscaling and side-scaling. This framework combines scale-independent and scale-dependent properties of geographical variables. It allows treatment of the varying spatial heterogeneity of geographical phenomena, combines spatial autocorrelation and heterogeneity, addresses scale-independent and scale-dependent factors, explores changes in information, incorporates geospatial Earth surface processes and uncertainties, and identifies the optimal scale(s) of models. This study shows that the classification of scaling methods according to various heterogeneities has great potential utility as an underpinning conceptual basis for advances in many Earth science research domains. © 2019 Elsevier B.V
    corecore