745 research outputs found

    Factoring bivariate lacunary polynomials without heights

    Full text link
    We present an algorithm which computes the multilinear factors of bivariate lacunary polynomials. It is based on a new Gap Theorem which allows to test whether a polynomial of the form P(X,X+1) is identically zero in time polynomial in the number of terms of P(X,Y). The algorithm we obtain is more elementary than the one by Kaltofen and Koiran (ISSAC'05) since it relies on the valuation of polynomials of the previous form instead of the height of the coefficients. As a result, it can be used to find some linear factors of bivariate lacunary polynomials over a field of large finite characteristic in probabilistic polynomial time.Comment: 25 pages, 1 appendi

    Value sets of sparse polynomials

    Get PDF
    We obtain a new lower bound on the size of value set f(F_p) of a sparse polynomial f in F_p[X] over a finite field of p elements when p is prime. This bound is uniform with respect of the degree and depends on some natural arithmetic properties of the degrees of the monomial terms of f and the number of these terms. Our result is stronger than those which canted be extracted from the bounds on multiplicities of individual values in f(F_p)

    Sublinear Root Detection and New Hardness Results for Sparse Polynomials over Finite Fields

    Get PDF

    Bounded-degree factors of lacunary multivariate polynomials

    Full text link
    In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary representation and a degree bound d and computes the irreducible factors of degree at most d of f in time polynomial in the lacunary size of f and in d. Our algorithm, which is valid for any field of zero characteristic, is based on a new gap theorem that enables reducing the problem to several instances of (a) the univariate case and (b) low-degree multivariate factorization. The reduction algorithms we propose are elementary in that they only manipulate the exponent vectors of the input polynomial. The proof of correctness and the complexity bounds rely on the Newton polytope of the polynomial, where the underlying valued field consists of Puiseux series in a single variable.Comment: 31 pages; Long version of arXiv:1401.4720 with simplified proof

    Near NP-Completeness for Detecting p-adic Rational Roots in One Variable

    Full text link
    We show that deciding whether a sparse univariate polynomial has a p-adic rational root can be done in NP for most inputs. We also prove a polynomial-time upper bound for trinomials with suitably generic p-adic Newton polygon. We thus improve the best previous complexity upper bound of EXPTIME. We also prove an unconditional complexity lower bound of NP-hardness with respect to randomized reductions for general univariate polynomials. The best previous lower bound assumed an unproved hypothesis on the distribution of primes in arithmetic progression. We also discuss how our results complement analogous results over the real numbers.Comment: 8 pages in 2 column format, 1 illustration. Submitted to a conferenc
    corecore