2,595 research outputs found

    Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

    Get PDF
    A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a manner modelled by a step down transformer. With this methodology, power harvesting for an implantable device is realized with the use of a large primary coil external to the subject, and a smaller secondary coil integrated into the implant. The signal received from the secondary coil must be regulated to provide a stable direct current (DC) power supply, which will be used to power the electronics in the implantable device. The focus of this work is on development of an electronic front-end for wireless powering of an implantable biomedical device. The energy harvesting front-end circuit is comprised of a rectifier, LDO regulator, and a temperature insensitive voltage reference. Physical design of the front-end circuit is developed in 0.13um CMOS technology with careful attention to analog layout issues. Post-layout simulation results are presented for each sub-block as well as the full front-end structure. The LDO regulator operates with supply voltages in the range of 1V to 1.5V with quiescent current of 10.5uA The complete power receiver front-end has a power conversion efficiency of up to 29%

    A low-power native NMOS-based bandgap reference operating from −55°C to 125°C with Li-Ion battery compatibility

    Get PDF
    Summary The paper describes the implementation of a bandgap reference based on native-MOSFET transistors for low-power sensor node applications. The circuit can operate from −55°C to 125°C and with a supply voltage ranging from 1.5 to 4.2 V. Therefore, it is compatible with the temperature range of automotive and military-aerospace applications, and for direct Li-Ion battery attach. Moreover, the circuit can operate without any dedicated start-up circuit, thanks to its inherent single operating point. A mathematical model of the reference circuit is presented, allowing simple portability across technology nodes, with current consumption and silicon area as design parameters. Implemented in a 55-nm CMOS technology, the voltage reference achieves a measured average (maximum) temperature coefficient of 28 ppm/°C (43 ppm/°C) and a measured sample-to-sample variation within 57 mV, with a current consumption of 420 nA at 27°C

    Low-power switched capacitor voltage reference

    Get PDF
    Low-power analog design represents a developing technological trend as it emerges from a rather limited range of applications to a much wider arena affecting mainstream market segments. It especially affects portable electronics with respect to battery life, performance, and physical size. Meanwhile, low-power analog design enables technologies such as sensor networks and RFID. Research opportunities abound to exploit the potential of low power analog design, apply low-power to established fields, and explore new applications. The goal of this effort is to design a low-power reference circuit that delivers an accurate reference with very minimal power consumption. The circuit and device level low-power design techniques are suitable for a wide range of applications. To meet this goal, switched capacitor bandgap architecture was chosen. It is the most suitable for developing a systematic, and groundup, low-power design approach. In addition, the low-power analog cell library developed would facilitate building a more complex low-power system. A low-power switched capacitor bandgap was designed, fabricated, and fully tested. The bandgap generates a stable 0.6-V reference voltage, in both the discrete-time and continuous-time domain. The system was thoroughly tested and individual building blocks were characterized. The reference voltage is temperature stable, with less than a 100 ppm/°C drift, over a --60 dB power supply rejection, and below a 1 [Mu]A total supply current (excluding optional track-and-hold). Besides using it as a voltage reference, potential applications are also described using derivatives of this switched capacitor bandgap, specifically supply supervisory and on-chip thermal regulation

    A Low-Power Low-Voltage Bandgap Reference in CMOS

    Get PDF
    Bandgap reference plays a substantial role in integrated circuit. Traditionally, it provides a constant reference voltage of 1.2051/ for other blocks in the circuit while itself is independent of temperature and power supply. However, the development of CMOS technology has brought us into a new era of high integration and ultra-low power consumption. As the gate length scales down, it is crucial to build circuits that are able to work under a very low voltage power supply, for instance, lower than the bandgap voltage of 1.205V. Building bandgap circuits to generate the conven­ tional bandgap voltage under a low voltage power supply such as 1.2V or IV is no longer practical nor useful. Thus, bandgap references working under low-voltage and consuming low-power is becoming the trend of research and development nowadays. In this thesis work, the potential structure of a low-voltage low-power bandgap reference is proposed, which is based on extracting a current that is a fraction of the traditional bandgap voltage. All the necessary blocks are designed to achieve the high accuracy bandgap reference, including bandgap core circuit, op-amp, start-up circuit and output stage. As a result, the designed bandgap reference is able to work under 1.2V power supply and provides an output reference voltage of 584.7mV. It has a variation of only 244.38fiV for the temperature range of 0°C ~ 125°C and has a variation of only 1.1mV for a power supply range of 1.08V ~ 1.32V. The layout design for the bandgap reference structure is also done carefully at the late stage, with an area of 100fj,m x 85¡xm

    An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    Get PDF
    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches

    Low-Frequency Noise Phenomena in Switched MOSFETs

    Get PDF
    In small-area MOSFETs widely used in analog and RF circuit design, low-frequency (LF) noise behavior is increasingly dominated by single-electron effects. In this paper, the authors review the limitations of current compact noise models which do not model such single-electron effects. The authors present measurement results that illustrate typical LF noise behavior in small-area MOSFETs, and a model based on Shockley-Read-Hall statistics to explain the behavior. Finally, the authors treat practical examples that illustrate the relevance of these effects to analog circuit design. To the analog circuit designer, awareness of these single-electron noise phenomena is crucial if optimal circuits are to be designed, especially since the effects can aid in low-noise circuit design if used properly, while they may be detrimental to performance if inadvertently applie

    An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC

    Get PDF
    Bandgap reference circuits are used in a host of analog, digital, and mixed-signal systems to establish an accurate voltage standard for the entire IC. The accuracy of the bandgap reference voltage under steady-state (dc) and transient (ac) conditions is critical to obtain high system performance. In this work, the impact of process, power-supply, load, and temperature variations and package stresses on the dc and ac accuracy of bandgap reference circuits has been analyzed. Based on this analysis, the a bandgap reference that 1. has high dc accuracy despite process and temperature variations and package stresses, without resorting to expensive trimming or noisy switching schemes, 2. has high dc and ac accuracy despite power-supply variations, without using large off-chip capacitors that increase bill-of-material costs, 3. has high dc and ac accuracy despite load variations, without resorting to error-inducing buffers, 4. is capable of producing a sub-bandgap reference voltage with a low power-supply, to enable it to operate in modern, battery-operated portable applications, 5. utilizes a standard CMOS process, to lower manufacturing costs, and 6. is integrated, to consume less board space has been proposed. The functionality of critical components of the system has been verified through prototypes after which the performance of the complete system has been evaluated by integrating all the individual components on an IC. The proposed CMOS bandgap reference can withstand 5mA of load variations while generating a reference voltage of 890mV that is accurate with respect to temperature to the first order. It exhibits a trimless, dc 3-sigma accuracy performance of 0.84% over a temperature range of -40°C to 125°C and has a worst case ac power-supply ripple rejection (PSRR) performance of 30dB up to 50MHz using 60pF of on-chip capacitance. All the proposed techniques lead to the development of a CMOS bandgap reference that meets the low-cost, high-accuracy demands of state-of-the-art System-on-Chip environments.Ph.D.Committee Chair: Rincon-Mora, Gabriel; Committee Member: Ayazi, Farrokh; Committee Member: Bhatti, Pamela; Committee Member: Leach, W. Marshall; Committee Member: Morley, Thoma
    corecore