167 research outputs found

    Dual-frequency single-inductor multiple-output (DF-SIMO) power converter topology for SoC applications

    Get PDF
    Modern mixed-signal SoCs integrate a large number of sub-systems in a single nanometer CMOS chip. Each sub-system typically requires its own independent and well-isolated power supply. However, to build these power supplies requires many large off-chip passive components, and thus the bill of material, the package pin count, and the printed circuit board area and complexity increase dramatically, leading to higher overall cost. Conventional (single-frequency) Single-Inductor Multiple-Output (SIMO) power converter topology can be employed to reduce the burden of off-chip inductors while producing a large number of outputs. However, this strategy requires even larger off-chip output capacitors than single-output converters due to time multiplexing between the multiple outputs, and thus many of them suffer from cross coupling issues that limit the isolation between the outputs. In this thesis, a Dual-Frequency SIMO (DF-SIMO) buck converter topology is proposed. Unlike conventional SIMO topologies, the DF-SIMO decouples the rate of power conversion at the input stage from the rate of power distribution at the output stage. Switching the input stage at low frequency (~2 MHz) simplifies its design in nanometer CMOS, especially with input voltages higher than 1.2 V, while switching the output stage at higher frequency enables faster output dynamic response, better cross-regulation, and smaller output capacitors without the efficiency and design complexity penalty of switching both the input and output stages at high frequency. Moreover, for output switching frequency higher than 100 MHz, the output capacitors can be small enough to be integrated on-chip. A 5-output 2-MHz/120-MHz design in 45-nm CMOS with 1.8-V input targeting low-power microcontrollers is presented as an application. The outputs vary from 0.6 to 1.6 V, with 4 outputs providing up to 15 mA and one output providing up to 50 mA. The design uses single 10-uH off-chip inductor, 2-nF on-chip capacitor for each 15-mA output and 4.5-nF for the 50-mA output. The peak efficiency is 73%, Dynamic Voltage Scaling (DVS) is 0.6 V/80 ns, and settling time is 30 ns for half-to-full load steps with no observable overshoot/undershoot or cross-coupling transients. The DF-SIMO topology enables realizing multiple efficient power supplies with faster dynamic response, better cross-regulation, and lower overall cost compared to conventional SIMO topologies

    Small Form Factor Hybrid CMOS/GaN Buck Converters for 10W Point of Load Applications

    Get PDF
    abstract: Point of Load (PoL) converters are important components to the power distribution system in computer power supplies as well as automotive, space, nuclear, and medical electronics. These converters often require high output current capability, low form factor, and high conversion ratios (step-down) without sacrificing converter efficiency. This work presents hybrid silicon/gallium nitride (CMOS/GaN) power converter architectures as a solution for high-current, small form-factor PoL converters. The presented topologies use discrete GaN power devices and CMOS integrated drivers and controller loop. The presented power converters operate in the tens of MHz range to reduce the form factor by reducing the size of the off-chip passive inductor and capacitor. Higher conversion ratio is achieved through a fast control loop and the use of GaN power devices that exhibit low parasitic gate capacitance and minimize pulse swallowing. This work compares three discrete buck power converter architectures: single-stage, multi-phase with 2 phases, and stacked-interleaved, using components-off-the-shelf (COTS). Each of the implemented power converters achieves over 80% peak efficiency with switching speeds up-to 10MHz for high conversion ratio from 24V input to 5V output and maximum load current of 10A. The performance of the three architectures is compared in open loop and closed loop configurations with respect to efficiency, output voltage ripple, and power stage form factor. Additionally, this work presents an integrated CMOS gate driver solution in CMOS 0.35um technology. The CMOS integrated circuit (IC) includes the gate driver and the closed loop controller for directly driving a single-stage GaN architecture. The designed IC efficiently drives the GaN devices up to 20MHz switching speeds. The presented controller technique uses voltage mode control with an innovative cascode driver architecture to allow a 3.3V CMOS devices to effectively drive GaN devices that require 5V gate signal swing. Furthermore, the designed power converter is expected to operate under 400MRad of total dose, thus enabling its use in high-radiation environments for the large hadron collider at CERN and nuclear facilities.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    A PWM/PFM Dual-Mode DC-DC Buck Converter with Load-Dependent Efficiency-Controllable Scheme for Multi-Purpose IoT Applications

    Get PDF
    This paper presents a dual-mode DC-DC buck converter including a load-dependent, efficiency-controllable scheme to support multi-purpose IoT applications. For light-load applications, a selectable adaptive on-time pulse frequency modulation (PFM) control is proposed to achieve optimum power efficiency by selecting the optimum switching frequency according to the load current, thereby reducing unnecessary switching losses. When the inductor peak current value or converter output voltage ripple are considered in some applications, its on-time can be adjusted further. In heavy-load applications, a conventional pulse width modulation (PWM) control scheme is adopted, and its gate driver is structured to reduce dynamic current, preventing the current from shooting through the power switch. A proposed dual-mode buck converter prototype is fabricated in a 180 nm CMOS process, achieving its measured maximum efficiency of 95.7% and power density of 0.83 W/mm(2)

    Battery-sourced switched-inductor multiple-output CMOS power-supply systems

    Get PDF
    Wireless microsystems add intelligence to larger systems by sensing, processing and transmitting information which can ultimately save energy and resources. Each function has their own power profile and supply level to maximize performance and save energy since they are powered by a small battery. Also, due to its small size, the battery has limited energy and therefore the power-supply system cannot consume much power. Switched-inductor converters are efficient across wide operating conditions but one fundamental challenge is integration because miniaturized dc-dc converters cannot afford to accommodate more than one off-chip power inductor. The objective of this research is to explore, develop, analyze, prototype, test, and evaluate how one switched inductor can derive power from a small battery to supply, regulate, and respond to several independent outputs reliably and accurately. Managing and stabilizing the feedback loops that supply several outputs at different voltages under diverse and dynamic loading conditions with one CMOS chip and one inductor is also challenging. Plus, since a single inductor cannot supply all outputs at once, steady-state ripples and load dumps produce cross-regulation effects that are difficult to manage and suppress. Additionally, as the battery depletes the power-supply system must be able to regulate both buck and boost voltages. The presented system can efficiently generate buck and boost voltages with the fastest response time while having a low silicon area consumption per output in a low-cost technology which can reduce the overall size and cost of the system.Ph.D

    Techniques for low power analog, digital and mixed signal CMOS integrated circuit design

    Get PDF
    With the continuously expanding of market for portable devices such as wireless communication devices, portable computers, consumer electronics and implantable medical devices, low power is becoming increasingly important in integrated circuits. The low power design can increase operation time and/or utilize a smaller size and lighter-weight battery. In this dissertation, several low power complementary metal-oxide-semiconductor (CMOS) integrated circuit design techniques are investigated. A metal-oxide-semiconductor field effect transistor (MOSFET) can be operated at a lower voltage by forward-biasing the source-substrate junction. This approach has been investigated in detail and used to designing an ultra-low power CMOS operational amplifier for operation at ± 0.4 V. The issue of CMOS latchup and noise has been investigated in detail because of the forward biasing of the substrates of MOSFETs in CMOS. With increasing forward body-bias, the leakage current increases significantly. Dynamic threshold MOSFET (DTMOS) technique is proposed to overcome the drawback which is inherent in a forward-biased MOSFET. By using the DTMOS method with the forward source-body biased MOSFET, two low-power low-voltage CMOS VLSI circuits that of a CMOS analog multiplexer and a Schmitt trigger circuits are designed. In this dissertation, an adaptive body-bias technique is proposed. Adaptive body-bias voltage is generated for several operational frequencies. Another issue, which the chip design community is facing, is the development of portable, cost effective and low power supply voltage. This dissertation proposes a new cost-effective DC/DC converter design in standard 1.5 um n-well CMOS, which adopts a delay-line controller for voltage regulation

    A Dual-Supply Buck Converter with Improved Light-Load Efficiency

    Get PDF
    Power consumption and device size have been placed at the primary concerns for battery-operated portable applications. Switching converters gain popularity in powering portable devices due to their high efficiency, compact sizes and high current delivery capability. However portable devices usually operate at light loads most of the time and are only required to deliver high current in very short periods, while conventional buck converter suffers from low efficiency at light load due to the switching losses that do not scale with load current. In this research, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective voltage supply at light load. This buck converter, implemented in TSMC 0.18 micrometers CMOS technology, operates with a input voltage of 3.3V and generates an output voltage of 0.9V, delivers a load current from 1mA to 400mA, and achieves 54 percent ~ 91 percent power efficiency. It is designed to work with a constant switching frequency of 3MHz. Without sacrificing output frequency spectrum or output ripple, an efficiency improvement of up to 20 percent is obtained at light load
    • 

    corecore