20 research outputs found

    Sub-1 V, 4 nA CMOS voltage references with digitally-trimmable temperature coefficient

    Get PDF
    Voltage references are fundamental to mixed signal converters which are widely used in elec- tronics. Hence there are signicant advantages in having the voltage reference operate with less power while minimizing area consumption and maintaining performance. Past designs have suered from issues related to process variations which adversely aect the temperature coe- cient of the circuit output. To compensate for these process variations, a means to modify the temperature coecient are proposed and experimentally veried with two circuit architectures. Five test chip samples implement these architectures in a 0.35 m CMOS process. Design methodologies for both architectures are presented. Design techniques include the use of a high-swing cascode to improve Line Sensitivity while minimizing additional power consumption, accounting for a well-matched layout, and the eect of leakage currents on the performance of the circuit. Layout schematics, performance gures, test methodologies and results are presented. Each circuit dissipates less than 4 nW and operates down to 0.9 V or better with Line Sensitivity and Power Supply Rejection Ratio of less than 0.15 %/V and -58 dB respectively, while consuming an area of 0.053 mm2 or less. The experimental average and median temperature coecient was less than 26 ppm/C and 22 ppm/C respectively in the 􀀀20 C to 80 C range, with the best performance being less than 8.1 ppm/C. Areas of improvement and potential areas of future research are then identied to facilitate advancement of this work

    A PVT tolerant voltage-controlled oscillator for automotive applications

    Get PDF
    This thesis focusses on the development of an integrated oscillator for automotive applications. The oscillator operates based on the Barkhausen criterion, which is a mathematical requirement used in electronics to predict whether a linear electronic circuit will oscillate. In this thesis, a voltage-controlled oscillator is designed for increased performance under various process, voltage and temperature (PVT) conditions. By applying a voltage reference block, the output frequency of 0.5MHz, 0.75MHz, 1MHz or 1.25MHz can be obtained. In order to compensate for the variations at PVT corners, the trimming technology is applied to increase the accuracy. The supply voltage is considered to be varying between 2.1V and 5.5V while the temperature range is -40oC -125oC.Includes bibliographical references

    A Design Methodology for Low Power CMOS Current Source

    Get PDF
    A current reference circuit is a basic building block in analog, digital and mixed-signal design systems. This work focuses on one type of integrated CMOS current reference circuit. This source only uses one type of MOSFET transistor and is suitable to produce very low currents in the order of nano Amperes. Despite being used in several works in the literature, there is no clear methodology to produce an optimal design for this source. With the absence of a design methodology, process variability becomes critical in affecting the performance of the current source. This variability issue is prominent in nanometer scaling of the technology. This work addresses that problem by developing a methodology to achieve a design with low area and low sensitivity to transistor mismatch. Presented are the sensitivity and mismatch analysis, methodology, design example and results in addi- tion to performance figures for a lesser sensitive circuit as compared with its traditional counterpart. Future scope of research has also been included in this thesis

    A Low-Power Wireless Multichannel Microsystem for Reliable Neural Recording.

    Full text link
    This thesis reports on the development of a reliable, single-chip, multichannel wireless biotelemetry microsystem intended for extracellular neural recording from awake, mobile, and small animal models. The inherently conflicting requirements of low power and reliability are addressed in the proposed microsystem at architectural and circuit levels. Through employing the preliminary microsystems in various in-vivo experiments, the system requirements for reliable neural recording are identified and addressed at architectural level through the analytical tool: signal path co-optimization. The 2.85mm×3.84mm, mixed-signal ASIC integrates a low-noise front-end, programmable digital controller, an RF modulator, and an RF power amplifier (PA) at the ISM band of 433MHz on a single-chip; and is fabricated using a 0.5µm double-poly triple-metal n-well standard CMOS process. The proposed microsystem, incorporating the ASIC, is a 9-channel (8-neural, 1-audio) user programmable reliable wireless neural telemetry microsystem with a weight of 2.2g (including two 1.5V batteries) and size of 2.2×1.1×0.5cm3. The electrical characteristics of this microsystem are extensively characterized via benchtop tests. The transmitter consumes 5mW and has a measured total input referred voltage noise of 4.74µVrms, 6.47µVrms, and 8.27µVrms at transmission distances of 3m, 10m, and 20m, respectively. The measured inter-channel crosstalk is less than 3.5% and battery life is about an hour. To compare the wireless neural telemetry systems, a figure of merit (FoM) is defined as the reciprocal of the power spent on broadcasting one channel over one meter distance. The proposed microsystem’s FoM is an order of magnitude larger compared to all other research and commercial systems. The proposed biotelemetry system has been successfully used in two in-vivo neural recording experiments: i) from a freely roaming South-American cockroach, and ii) from an awake and mobile rat.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91542/1/aborna_1.pd

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    Variability-aware design of CMOS nanopower reference circuits

    Get PDF
    Questo lavoro è inserito nell'ambito della progettazione di circuiti microelettronici analogici con l'uso di tecnologie scalate, per le quali ha sempre maggiore importanza il problema della sensibilità delle grandezze alle variazioni di processo. Viene affrontata la progettazione di generatori di quantità di riferimento molto precisi, basati sull’uso di dispositivi che sono disponibili anche in tecnologie CMOS standard e che sono “intrinsecamente” più robusti rispetto alle variazioni di processo. Questo ha permesso di ottenere una bassa sensibilità al processo insieme ad un consumo di potenza estremamente ridotto, con il principale svantaggio di una elevata occupazione di area. Tutti i risultati sono stati ottenuti in una tecnologia 0.18μm CMOS. In particolare, abbiamo progettato un riferimento di tensione, ottenendo una deviazione standard relativa della tensione di riferimento dello 0.18% e un consumo di potenza inferiore a 70 nW, sulla base di misure su un set di 20 campioni di un singolo batch. Sono anche disponibili risultati relativi alla variabilità inter batch, che mostrano una deviazione standard relativa cumulativa della tensione di riferimento dello 0.35%. Abbiamo quindi progettato un riferimento di corrente, ottenendo anche in questo caso una sensibilità al processo della corrente di riferimento dell’1.4% con un consumo di potenza inferiore a 300 nW (questi sono risultati sperimentali ottenuti dalle misure su 20 campioni di un singolo batch). I riferimenti di tensione e di corrente proposti sono stati quindi utilizzati per la progettazione di un oscillatore a rilassamento a bassa frequenza, che unisce una ridotta sensibilità al processo, inferiore al 2%, con un basso consumo di potenza, circa 300 nW, ottenuto sulla base di simulazioni circuitali. Infine, nella progettazione dei blocchi sopra menzionati, abbiamo applicato un metodo per la determinazione della stabilità dei punti di riposo, basato sull’uso dei CAD standard utilizzati per la progettazione microelettronica. Questo approccio ci ha permesso di determinare la stabilità dei punti di riposo desiderati, e ci ha anche permesso di stabilire che i circuiti di start up spesso non sono necessari

    Temperature sensors in SOI CMOS for high temperature applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Sub-Femto-Farad Resolution Electronic Interfaces for Integrated Capacitive Sensors: A Review

    Get PDF
    Capacitance detection is a universal transduction mechanism used in a wide variety of sensors and applications. It requires an electronic front-end converting the capacitance variation into another more convenient physical variable, ultimately determining the performance of the whole sensor. In this paper we present a comprehensive review of the different signal conditioning front-end topologies targeted in particular at sub-femtofarad resolution. Main design equations and analysis of the limits due to noise are reported in order to provide the designer with guidelines for choosing the most suitable topology according to the main design specifications, namely energy consumption, area occupation, measuring time and resolution. A data-driven comparison of the different solutions in literature is also carried out revealing that resolution, measuring time, area occupation and energy/conversion lower than 100 aF, 1 ms 0.1 mm2, and 100 pJ/conv. can be obtained by capacitance to digital topologies, which therefore allow to get the best compromise among all design specifications
    corecore