102 research outputs found

    Broadband adaptive beamforming with low complexity and frequency invariant response

    No full text
    This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation.A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save based GSC beamforming structures have been explored. This system address the minimisation of the time domain MMSE, with a significant reduction in computational complexity when compared to time-domain implementations, and show a better convergence behaviour than the IFB beamformer. By studying the effects that the blocking matrix has on the adaptive process for the overlap-save beamformer, several modifications are carried out to enhance both the simplicity of the algorithm as well as its convergence speed. These modifications result in the GSC beamformer utilising a significantly lower computational complexity compare to the time domain approach while offering similar convergence characteristics.In certain applications, especially in the areas of acoustics, there is a need to maintain constant resolution across a wide operating spectrum that may extend across several octaves. To attain constant beamwidth is difficult, particularly if uniformly spaced linear sensor array are employed for beamforming, since spatial resolution is reciprocally proportional to both the array aperture and the frequency. A scaled aperture arrangement is introduced for the subband based GSC beamformer to achieve near uniform resolution across a wide spectrum, whereby an octave-invariant design is achieved. This structure can also be operated in conjunction with adaptive beamforming algorithms. Frequency dependent tapering of the sensor signals is proposed in combination with the overlap-save GSC structure in order to achieve an overall frequency-invariant characteristic. An adaptive version is proposed for frequency-invariant overlap-save GSC beamformer. Broadband adaptive beamforming algorithms based on the family of least mean squares (LMS) algorithms are known to exhibit slow convergence if the input signal is correlated. To improve the convergence of the GSC when based on LMS-type algorithms, we propose the use of a broadband eigenvalue decomposition (BEVD) to decorrelate the input of the adaptive algorithm in the spatial dimension, for which an increase in convergence speed can be demonstrated over other decorrelating measures, such as the Karhunen-Loeve transform. In order to address the remaining temporal correlation after BEVD processing, this approach is combined with subband decomposition through the use of oversampled filter banks. The resulting spatially and temporally decorrelated GSC beamformer provides further enhanced convergence speed over spatial or temporal decorrelation methods on their own

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    MVDR broadband beamforming using polynomial matrix techniques

    Get PDF
    This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC beamformer for a uniform linear array, and then extended to the constrained MVDR, or Capon, beamformer and also the GSC with an arbitrary array structure. The uniqueness of the designed GSC comes from utilising the polynomial matrix technique, and its ability to steer the array beam towards an off-broadside direction without the pre-steering stage that is associated with conventional approaches to broadband beamformers. To solve the broadband beamforming problem, this thesis addresses a number of additional tools. A first one is the accurate construction of both the steering vectors based on fractional delay filters, which are required for the broadband constraint formulation of a beamformer, as for the construction of the quiescent beamformer. In the GSC case, we also discuss how a block matrix can be obtained, and introduce a novel paraunitary matrix completion algorithm. For the Capon beamformer, the polynomial extension requires the inversion of a polynomial matrix, for which a residue-based method is proposed that offers better accuracy compared to previously utilised approaches. These proposed polynomial matrix techniques are evaluated in a number of simulations. The results show that the polynomial broadband beamformer (PBBF) steersthe main beam towards the direction of the signal of interest (SoI) and protects the signal over the specified bandwidth, and at the same time suppresses unwanted signals by placing nulls in their directions. In addition to that, the PBBF is compared to the standard time domain broadband beamformer in terms of their mean square error performance, beam-pattern, and computation complexity. This comparison shows that the PBBF can offer a significant reduction in computation complexity compared to its standard counterpart. Overall, the main benefits of this approach include beam steering towards an arbitrary look direction with no need for pre-steering step, and a potentially significant reduction in computational complexity due to the decoupling of dependencies of the quiescent beamformer, blocking matrix, and the adaptive filter compared to a standard broadband beamformer implementation.This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC beamformer for a uniform linear array, and then extended to the constrained MVDR, or Capon, beamformer and also the GSC with an arbitrary array structure. The uniqueness of the designed GSC comes from utilising the polynomial matrix technique, and its ability to steer the array beam towards an off-broadside direction without the pre-steering stage that is associated with conventional approaches to broadband beamformers. To solve the broadband beamforming problem, this thesis addresses a number of additional tools. A first one is the accurate construction of both the steering vectors based on fractional delay filters, which are required for the broadband constraint formulation of a beamformer, as for the construction of the quiescent beamformer. In the GSC case, we also discuss how a block matrix can be obtained, and introduce a novel paraunitary matrix completion algorithm. For the Capon beamformer, the polynomial extension requires the inversion of a polynomial matrix, for which a residue-based method is proposed that offers better accuracy compared to previously utilised approaches. These proposed polynomial matrix techniques are evaluated in a number of simulations. The results show that the polynomial broadband beamformer (PBBF) steersthe main beam towards the direction of the signal of interest (SoI) and protects the signal over the specified bandwidth, and at the same time suppresses unwanted signals by placing nulls in their directions. In addition to that, the PBBF is compared to the standard time domain broadband beamformer in terms of their mean square error performance, beam-pattern, and computation complexity. This comparison shows that the PBBF can offer a significant reduction in computation complexity compared to its standard counterpart. Overall, the main benefits of this approach include beam steering towards an arbitrary look direction with no need for pre-steering step, and a potentially significant reduction in computational complexity due to the decoupling of dependencies of the quiescent beamformer, blocking matrix, and the adaptive filter compared to a standard broadband beamformer implementation

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Signal processing techniques for mobile multimedia systems

    Get PDF
    Recent trends in wireless communication systems show a significant demand for the delivery of multimedia services and applications over mobile networks - mobile multimedia - like video telephony, multimedia messaging, mobile gaming, interactive and streaming video, etc. However, despite the ongoing development of key communication technologies that support these applications, the communication resources and bandwidth available to wireless/mobile radio systems are often severely limited. It is well known, that these bottlenecks are inherently due to the processing capabilities of mobile transmission systems, and the time-varying nature of wireless channel conditions and propagation environments. Therefore, new ways of processing and transmitting multimedia data over mobile radio channels have become essential which is the principal focus of this thesis. In this work, the performance and suitability of various signal processing techniques and transmission strategies in the application of multimedia data over wireless/mobile radio links are investigated. The proposed transmission systems for multimedia communication employ different data encoding schemes which include source coding in the wavelet domain, transmit diversity coding (space-time coding), and adaptive antenna beamforming (eigenbeamforming). By integrating these techniques into a robust communication system, the quality (SNR, etc) of multimedia signals received on mobile devices is maximised while mitigating the fast fading and multi-path effects of mobile channels. To support the transmission of high data-rate multimedia applications, a well known multi-carrier transmission technology known as Orthogonal Frequency Division Multiplexing (OFDM) has been implemented. As shown in this study, this results in significant performance gains when combined with other signal-processing techniques such as spa ce-time block coding (STBC). To optimise signal transmission, a novel unequal adaptive modulation scheme for the communication of multimedia data over MIMO-OFDM systems has been proposed. In this system, discrete wavelet transform/subband coding is used to compress data into their respective low-frequency and high-frequency components. Unlike traditional methods, however, data representing the low-frequency data are processed and modulated separately as they are more sensitive to the distortion effects of mobile radio channels. To make use of a desirable subchannel state, such that the quality (SNR) of the multimedia data recovered at the receiver is optimized, we employ a lookup matrix-adaptive bit and power allocation (LM-ABPA) algorithm. Apart from improving the spectral efficiency of OFDM, the modified LM-ABPA scheme, sorts and allocates subcarriers with the highest SNR to low-frequency data and the remaining to the least important data. To maintain a target system SNR, the LM-ABPA loading scheme assigns appropriate signal constella tion sizes and transmit power levels (modulation type) across all subcarriers and is adapted to the varying channel conditions such that the average system error-rate (SER/BER) is minimised. When configured for a constant data-rate load, simulation results show significant performance gains over non-adaptive systems. In addition to the above studies, the simulation framework developed in this work is applied to investigate the performance of other signal processing techniques for multimedia communication such as blind channel equalization, and to examine the effectiveness of a secure communication system based on a logistic chaotic generator (LCG) for chaos shift-keying (CSK)

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Esquemas de pré-codificação e equalização para arquiteturas híbridas sub-conectadas na banda de ondas milimétricas

    Get PDF
    In the last years, the demand for high data rates increased substantially and the mobile communications are currently a necessity for our society. Thus, the number of users to access interactive services and applications has increased. The next generation of wireless communications (5G) is expected to be released in 2020 and it is projected to provide extremely high data rates for the users. The millimeter wave communications band and the massive MIMO are two promising keys technologies to achieve the multi Gbps for the future generations of mobile communications, in particular the 5G. The conjugation of these two technologies, allows packing a large number of antennas in the same volume than in the current frequencies and increase the spectral efficiency. However, when we have a large number of antennas, it is not reasonable to have a fully digital architecture due to the hardware constrains. On the other hand, it is not feasible to have a system that works only in the analog domain by employing a full analog beamforming since the performance is poor. Therefore, it is required a design of hybrid analog/digital architectures to reduce the complexity and achieve a good performance. Fully connected and sub-connected schemes are two examples of hybrid architectures. In the fully connected one, all RF chain connect to all antenna elements while in the sub-connected architecture, each RF chain is connected to a group of antennas. Consequently, the sub-connected architecture is more attractive due to the low complexity when compared to the fully connected one. Also, it is expected that millimeter waves be wideband, however, most of the works developed in last years for hybrid architectures are mainly focused in narrowband channels. Therefore, in this dissertation it is designed a low complex analog precoder at the user terminals and a hybrid analog-digital multi-user linear equalizer for broadband sub-connected millimeter wave massive MIMO at the base station. The analog precoder at the transmitter considers a quantized version of the average angle of departure of each cluster for its computation. In order to remove the multi-user interference, it is considered a hybrid sub-connected approach that minimizes the bit error rate (BER). The performance results show that the proposed hybrid sub-connected scheme is close to the hybrid full-connected design. However, due to the large number of connections, the full-connected scheme is slightly better than the proposed sub-connected scheme but with higher complexity. Therefore, the proposed analog precoder and hybrid sub-connected equalizer are more feasible to practical applications due to the good trade-off between performance and complexity.Nos últimos anos, a necessidade por elevadas taxas de transmissão de dados tem vindo a aumentar substancialmente uma vez que as comunicações móveis assumem cada vez mais um papel fundamental na sociedade atual. Por isso, o número de utilizadores que acedem a serviços e aplicações interativas tem vindo a aumentar. A próxima geração de comunicações móveis (5G) é esperada que seja lançada em 2020 e é projetada para fornecer elevadas taxas de transmissão de dados aos seus utilizadores. A comunicação na banda das ondas milimétricas e o MIMO massivo são duas tecnologias promissoras para alcançar os multi Gb/s para as comunicações móveis futuras, em particular o 5G. Conjugando essas duas tecnologias, permite-nos colocar um maior número de antenas no mesmo volume comparativamente às frequências atuais, aumentando assim a eficiência espectral. No entanto, quanto se tem um grande número de antenas, não é viável ter uma arquitetura totalmente digital devido às restrições de hardware. Por outro lado, não é viável ter um sistema que trabalhe apenas no domínio analógico. Assim sendo, é necessária uma arquitetura híbrida analógica-digital de modo a remover a complexidade geral do sistema. É esperado que os sistemas de comunicação baseados em ondas milimétricas sejam de banda larga, no entanto, a maioria dos trabalhos feitos para arquiteturas híbridas são focados em canais de banda estreita. Dois exemplos de soluções híbridas são as arquiteturas completamente conectada e sub-conectada. Na primeira, todas as cadeias RF estão ligadas a todas as antenas enquanto na arquitetura sub-conectada cada cadeia RF é ligada apenas a um grupo de antenas. Consequentemente, a arquitetura sub-conectada é mais interessante do ponto de vista prático devido à sua menor complexidade quando comparada à arquitetura completamente conectada. Nesta dissertação é projetado um pré-codificador analógico de baixa complexidade no terminal móvel, combinado com um equalizador multiutilizador desenhado para uma arquitetura híbrida sub-conectada, implementado na estação base. O pré-codificador no transmissor assume um conhecimento parcial da informação do canal e, de modo a remover eficientemente a interferência multiutilizador, é proposta também uma arquitetura híbrida sub-conectada que minimiza a taxa média de erro. Os resultados de desempenho mostram que o esquema híbrido sub-conectado proposto está próximo da arquitetura híbrida completamente conectada. No entanto, devido ao grande número de conexões, a arquitetura híbrida completamente conectada é ligeiramente melhor que a arquitetura sub-conectada proposta à custa de uma maior complexidade. Assim sendo, o pré-codificador analógico e o equalizador sub-conectado híbrido proposto são mais viáveis para aplicações práticas devido ao compromisso entre o desempenho e a complexidade.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    • …
    corecore