6,732 research outputs found

    Demand response performance and uncertainty: A systematic literature review

    Get PDF
    The present review has been carried out, resorting to the PRISMA methodology, analyzing 218 published articles. A comprehensive analysis has been conducted regarding the consumer's role in the energy market. Moreover, the methods used to address demand response uncertainty and the strategies used to enhance performance and motivate participation have been reviewed. The authors find that participants will be willing to change their consumption pattern and behavior given that they have a complete awareness of the market environment, seeking the optimal decision. The authors also find that a contextual solution, giving the right signals according to the different behaviors and to the different types of participants in the DR event, can improve the performance of consumers' participation, providing a reliable response. DR is a mean of demand-side management, so both these concepts are addressed in the present paper. Finally, the pathways for future research are discussed.This article is a result of the project RETINA (NORTE-01-0145- FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). We also acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team, and grants CEECIND/02887/2017 and SFRH/BD/144200/2019.info:eu-repo/semantics/publishedVersio

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error

    Get PDF
    BACKGROUND: Here, we outline a method of applying existing machine learning (ML) approaches to aid citation screening in an on-going broad and shallow systematic review of preclinical animal studies. The aim is to achieve a high-performing algorithm comparable to human screening that can reduce human resources required for carrying out this step of a systematic review. METHODS: We applied ML approaches to a broad systematic review of animal models of depression at the citation screening stage. We tested two independently developed ML approaches which used different classification models and feature sets. We recorded the performance of the ML approaches on an unseen validation set of papers using sensitivity, specificity and accuracy. We aimed to achieve 95% sensitivity and to maximise specificity. The classification model providing the most accurate predictions was applied to the remaining unseen records in the dataset and will be used in the next stage of the preclinical biomedical sciences systematic review. We used a cross-validation technique to assign ML inclusion likelihood scores to the human screened records, to identify potential errors made during the human screening process (error analysis). RESULTS: ML approaches reached 98.7% sensitivity based on learning from a training set of 5749 records, with an inclusion prevalence of 13.2%. The highest level of specificity reached was 86%. Performance was assessed on an independent validation dataset. Human errors in the training and validation sets were successfully identified using the assigned inclusion likelihood from the ML model to highlight discrepancies. Training the ML algorithm on the corrected dataset improved the specificity of the algorithm without compromising sensitivity. Error analysis correction leads to a 3% improvement in sensitivity and specificity, which increases precision and accuracy of the ML algorithm. CONCLUSIONS: This work has confirmed the performance and application of ML algorithms for screening in systematic reviews of preclinical animal studies. It has highlighted the novel use of ML algorithms to identify human error. This needs to be confirmed in other reviews with different inclusion prevalence levels, but represents a promising approach to integrating human decisions and automation in systematic review methodology
    • …
    corecore