89,357 research outputs found

    Large eddy simulation of plume dispersion behind an aircraft in the take-off phase

    Get PDF
    The aim of this paper is to provide an investigation, using large eddy simulation, into plume dispersion behind an aircraft in co-flowing take-off conditions. Validation studies of the computational model were presented by Aloysius and Wrobel (Environ Model Softw 24:929–937, 2009) and a study of the flow and dispersion properties of a double-engine aircraft jetwas presented by Aloysius et al. EEC/SEE/2007/001,EUROCONTROLExperimentalCentre, http://www.eurocontrol.int/eec/gallery/content/public/document/eec/report/2007/ 032_ALAQS_comparison_of_CFD_and_Lagrangian_dispersion_methods.pdf), in which only the engine was modelled. In this paper, the complete geometry of a Boeing 737 is modelled and investigated. The currentwork represents a contribution towards a better understanding of the source dynamics behind an airplane jet engine during the take-off and landing phases. The information provided from these simulations will be useful for future improvements of existing dispersion models

    The effect of short-term changes in air pollution on respiratory and cardiovascular morbidity in Nicosia, Cyprus.

    Get PDF
    Presented at the 6th International Conference on Urban Air Quality, Limassol, March, 2007. Short-paper was submitted for peer-review and appears in proceedings of the conference.This study investigates the effect of daily changes in levels of PM10 on the daily volume of respiratory and cardiovascular admissions in Nicosia, Cyprus during 1995-2004. After controlling for long- (year and month) and short-term (day of the week) patterns as well as the effect of weather in Generalized Additive Poisson models, some positive associations were observed with all-cause and cause-specific admissions. Risk of hospitalization increased stepwise across quartiles of days with increasing levels of PM10 by 1.3% (-0.3, 2.8), 4.9% (3.3, 6.6), 5.6% (3.9, 7.3) as compared to days with the lowest concentrations. For every 10μg/m3 increase in daily average PM10 concentration, there was a 1.2% (-0.1%, 2.4%) increase in cardiovascular admissions. With respects to respiratory admissions, an effect was observed only in the warm season with a 1.8% (-0.22, 3.85) increase in admissions per 10μg/m3 increase in PM10. The effect on respiratory admissions seemed to be much stronger in women and, surprisingly, restricted to people of adult age

    When does centrality matter? Scientific productivity and the moderating role of research specialization and cross-community ties

    Get PDF
    The present study addresses the ongoing debate concerning academic scientific productivity. Specifically, given the increasing number of collaborations in academia and the crucial role networks play in knowledge creation, we investigate the extent to which building social capital within the academic community represents a valuable resource for a scientist's knowledge-creation process. We measure the social capital in terms of structural position within the academic collaborative network. Furthermore, we analyse the extent to which an academic scientist's research specialization and ties that cross-community boundaries act as moderators of the aforementioned relationship. Empirical results derived from an analysis of an Italian academic community from 2001 to 2008 suggest academic scientists that build social capital by occupying central positions in the community outperform their more isolated colleagues. However, scientific productivity declines beyond a certain threshold value of centrality, hence revealing the existence of an inverted U-shaped relationship. This relationship is negatively moderated by the extent to which an academic focuses research activities in few scientific knowledge domains, whereas it is positively moderated by the number of cross-community ties established

    Comparison of flow and dispersion properties of free and wall turbulent jets for source dynamics characterisation

    Get PDF
    The objective of this paper is to provide an investigation, using large eddy simulations, into the dispersion of aircraft jets in co-flowing take-off conditions. Before carrying out such study, simple turbulent plane free and wall jet simulations are carried out to validate the computational models and to assess the impact of the presence of the solid boundary on the flow and dispersion properties. The current study represents a step towards a better understanding of the source dynamics behind an airplane jet engine during the take-off and landing phases. The information provided from these simulations can be used for future improvements of existing dispersion models

    An improved method for statistical studies of the internal kinematics of HII regions: the case of M 83

    Full text link
    We present the integrated Halpha emission line profile for 157 HII regions in the central 3.4' x 3.4' of the galaxy M 83 (NGC 5236). Using the Fabry-Perot interferometer GHaFaS, on the 4.2 m William Herschel on La Palma, we show the importance of a good characterization of the instrumental response function for the study of line profile shapes. The luminosity-velocity dispersion relation is also studied, and in the log(L)-log(sigma) plane we do not find a linear relation, but an upper envelope with equation log(L)=0.9 *log(sigma)+38.1. For the adopted distance of 4.5 Mpc, the upper envelope appears at the luminosity L=10^38.5 ergs, in full agreement with previous studies of other galaxies, reinforcing the idea of using HII regions as standard candles.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    GALEX FUV Observations of Comet C/2004 Q2 (Machholz): The Ionization Lifetime of Carbon

    Full text link
    We present a measurement of the lifetime of ground state atomic carbon, C(^3P), against ionization processes in interplanetary space and compare it to the lifetime expected from the dominant physical processes likely to occur in this medium. Our measurement is based on analysis of a far ultraviolet (FUV) image of comet C/2004 Q2 (Machholz) recorded by the Galaxy Evolution Explorer (GALEX) on 2005 March 1. The bright CI 1561 A and 1657 A multiplets dominate the GALEX FUV band. We used the image to create high S/N radial profiles that extended beyond one million km from the comet nucleus. Our measurements yielded a total carbon lifetime of 7.1 -- 9.6 x 10^5 s (scaled to 1 AU). Which compares favorably to calculations assuming solar photoionization, solar wind proton change exchange and solar wind electron impact ionization are the dominant processes occurring in this medium and that comet Machholz was embedded in the slow solar wind. The shape of the CI profiles inside 3x10^5 km suggests that either the CO lifetime is shorter than previously thought and/or a shorter-lived carbon-bearing parent molecule, such as CH_4 is providing the majority of the carbon in this region of the coma of comet Machholz.Comment: 26 pages, 6 figures, accepted for publication in the Astrophysical Journa

    The Complex Structure of the Multi-Phase Galactic Wind in a Starburst Merger

    Full text link
    Neutral outflows have been detected in many ultraluminous infrared galaxies (ULIRGs) via the Na I D λλ5890,5896\lambda\lambda 5890, 5896 absorption-line doublet. For the first time, we have mapped and analyzed the 2-D kinematics of a cool neutral outflow in a ULIRG, F10565+2448, using the integral field unit (IFU) on Gemini North to observe the Na I D feature. At the same time we have mapped the ionized outflow with the [NII] and Hα\alpha emission lines. We find a systemic rotation curve that is consistent with the rotation of the molecular disk determined from previous CO observations. The absorption lines show evidence of a nuclear outflow with a radial extent of at least 3 kpc, consistent with previous observations. The strength of the Na I D lines have a strong, spatially resolved correlation with reddening, suggesting that dust is present in the outflow. Surprisingly, the outflow velocities of the neutral gas show a strong asymmetry in the form of a major-axis gradient that is opposite in sign to disk rotation. This is inconsistent with entrained material rotating along with the galaxy or with a tilted minor-axis outflow. We hypothesize that this unusual behavior is due to an asymmetry in the distribution of the ambient gas. We also see evidence of asymmetric ionized outflow in the emission-line velocity map, which appear to be decoupled from the neutral outflow. Our results strengthen the hypothesis that ULIRG outflows differ in morphology from those in more quiescent disk galaxies.Comment: Accepted to Ap
    corecore