13 research outputs found

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Modeling and Programming Shape-Morphing Structured Media

    Get PDF
    Shape-morphing and self-propelled locomotion are examples of mechanical behaviors that can be "programmed" in structured media by designing geometric features at micro- and mesostructural length scales. This programmability is possible because the small-scale geometry often imposes local kinematic modes that are strongly favored over other deformations. In turn, global behaviors are influenced by local kinematic preferences over the extent of the structured medium and by the kinematic compatibility (or incompatibility) between neighboring regions of the domain. This considerably expands the design space for effective mechanical properties, since objects made of the same bulk material but with different internal geometry will generally display very different behaviors. This motivates pursuing a mechanistic understanding of the connection between small-scale geometry and global kinematic behaviors. This thesis addresses challenges pertaining to the modeling and design of structured media that undergo large deformations. The first part of the thesis focuses on the relation between micro- or mesoscale patterning and energetically favored modes of deformation. This is first discussed within the context of twisted bulk metallic glass ribbons whose edges display periodic undulations. The undulations cause twist concentrations in the narrower regions of the structural element, delaying the onset of material failure and permitting the design of structures whose deployment and compaction emerge from the ribbons' chirality. Following this discussion of a periodic system, we study sheets with non-uniform cut patterns that buckle out-of-plane. Motivated by computational challenges associated with the presence of geometric features at disparate length scales, we construct an effective continuum model for these non-periodic systems, allowing us to simulate their post-buckling behavior efficiently and with good accuracy. The second part of the thesis discusses ways to leverage the connection between micro/mesoscale geometry and energetically favorable local kinematics to create "programmable matter" that undergo prescribed shape changes or self-propelled locomotion when exposed to an environmental stimulus. We first demonstrate the capabilities of an inverse design method that automates the design of structured plates that morph into target 3D geometries over time-dependent actuation paths. Finally, we present devices made of 3D-printed liquid crystal elastomer (LCE) hinges that change shape and self-propel when heated.</p

    Injury and Skeletal Biomechanics

    Get PDF
    This book covers many aspects of Injury and Skeletal Biomechanics. As the title represents, the aspects of force, motion, kinetics, kinematics, deformation, stress and strain are examined in a range of topics such as human muscles and skeleton, gait, injury and risk assessment under given situations. Topics range from image processing to articular cartilage biomechanical behavior, gait behavior under different scenarios, and training, to musculoskeletal and injury biomechanics modeling and risk assessment to motion preservation. This book, together with "Human Musculoskeletal Biomechanics", is available for free download to students and instructors who may find it suitable to develop new graduate level courses and undergraduate teaching in biomechanics

    Life Sciences Program Tasks and Bibliography for FY 1997

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page

    General Catalog 2009-2010

    Get PDF
    Contains course descriptions, University college calendar, and college administrationhttps://digitalcommons.usu.edu/universitycatalogs/1128/thumbnail.jp

    General Catalog 2007-2009

    Get PDF
    Contains course descriptions, University college calendar, and college administrationhttps://digitalcommons.usu.edu/universitycatalogs/1127/thumbnail.jp

    General Catalog 2005-2006

    Get PDF
    Contains course descriptions, University college calendar, and college administrationhttps://digitalcommons.usu.edu/universitycatalogs/1125/thumbnail.jp
    corecore