1,133 research outputs found

    Developing Cost-Effective Model-Based Techniques for GUI Testing

    Get PDF
    Most of today's software users interact with the software through a graphical user interface (GUI), which constitutes as much as 45-60% of the total code. The correctness of the GUI is necessary to ensure the correctness of the overall software. Although GUIs have become ubiquitous, testing GUIs for functional correctness has remained a neglected research area. Existing GUI testing techniques are extremely resource intensive primarily because GUIs have very large input spaces and evolve frequently. This dissertation overcomes the limitations of existing techniques by developing a process with supporting models, techniques, and tools for continuous integration testing of evolving GUI-based applications. The key idea of this process is to create three concentric testing loops, each with specific GUI testing goals, resource usage, and targeted feedback. The innermost fully automatic loop called crash testing operates on each code change of the GUI software. The second semi-automated loop called smoke testing operates on each day's GUI build. The outermost loop called comprehensive GUI testing is executed after a major version of the GUI is available. The primary enablers of this process, also developed in this dissertation, include an abstract model of the GUI and a set of model-based techniques for test-case generation, test oracle creation, and continuous GUI testing. The model and techniques were obtained by studying GUI faults, interactions between GUI events, and why certain event interactions lead to faults. The continuous testing process and associated techniques are shown to be useful, via several large experiments involving millions of test cases, on both in-house and open-source GUI applications

    Reverse Engineering and Testing of Rich Internet Applications

    Get PDF
    The World Wide Web experiences a continuous and constant evolution, where new initiatives, standards, approaches and technologies are continuously proposed for developing more effective and higher quality Web applications. To satisfy the growing request of the market for Web applications, new technologies, frameworks, tools and environments that allow to develop Web and mobile applications with the least effort and in very short time have been introduced in the last years. These new technologies have made possible the dawn of a new generation of Web applications, named Rich Internet Applications (RIAs), that offer greater usability and interactivity than traditional ones. This evolution has been accompanied by some drawbacks that are mostly due to the lack of applying well-known software engineering practices and approaches. As a consequence, new research questions and challenges have emerged in the field of web and mobile applications maintenance and testing. The research activity described in this thesis has addressed some of these topics with the specific aim of proposing new and effective solutions to the problems of modelling, reverse engineering, comprehending, re-documenting and testing existing RIAs. Due to the growing relevance of mobile applications in the renewed Web scenarios, the problem of testing mobile applications developed for the Android operating system has been addressed too, in an attempt of exploring and proposing new techniques of testing automation for these type of applications

    Defining and Evaluating Test Suite Consolidation for Event Sequence-based Test Cases

    Get PDF
    This research presents a new test suite consolidation technique, called CONTEST, for automated GUI testing. A new probabilistic model of the GUI is developed to allow direct application of CONTEST. Multiple existing test suites are used to populate the model and compute probabilities based on the observed event sequences. These probabilities are used to generate a new test suite that consolidates the original ones. A new test suite similarity metric, called CONTeSSi(n), is introduced which compares multiple event sequence-based test suites using relative event positions. Results of empirical studies showed that CONTEST yields a test suite that achieves better fault detection and code coverage than the original suites, and that the CONTeSSi(n) metric is a better indicator of the similarity between sequence-based test suites than existing metrics

    A Methodological Framework for Evaluating Software Testing Techniques and Tools

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.There exists a real need in industry to have guidelines on what testing techniques use for different testing objectives, and how usable (effective, efficient, satisfactory) these techniques are. Up to date, these guidelines do not exist. Such guidelines could be obtained by doing secondary studies on a body of evidence consisting of case studies evaluating and comparing testing techniques and tools. However, such a body of evidence is also lacking. In this paper, we will make a first step towards creating such body of evidence by defining a general methodological evaluation framework that can simplify the design of case studies for comparing software testing tools, and make the results more precise, reliable, and easy to compare. Using this framework, (1) software testing practitioners can more easily define case studies through an instantiation of the framework, (2) results can be better compared since they are all executed according to a similar design, (3) the gap in existing work on methodological evaluation frameworks will be narrowed, and (4) a body of evidence will be initiated. By means of validating the framework, we will present successful applications of this methodological framework to various case studies for evaluating testing tools in an industrial environment with real objects and real subjects.This work was funded by the European project FITTEST (ICT257574, 2010-2013) and Spanish National project CaSA-Calidad (TIN2010-12312-E, Ministerio de Ciencia e Innovación)Vos, TE.; Marín, B.; Escalona, MJ.; Marchetto, A. (2012). A Methodological Framework for Evaluating Software Testing Techniques and Tools. IEEE. https://doi.org/10.1109/QSIC.2012.16
    • …
    corecore