684 research outputs found

    Some Issues in the Art Image Database Systems

    Get PDF
    In this paper we illustrate several aspects of art databases, such as: the spread of the multimedia art images; the main characteristics of art images; main art images search models; unique characteristics for art image retrieval; the importance of the sensory and semantic gaps. In addition, we present several interesting features of an art image database, such as: image indexing; feature extraction; analysis on various levels of precision; style classification. We stress color features and their base, painting analysis and painting styles. We study also which MPEG-7 descriptors are best for fine painting images retrieval. An experimental system is developed to see how these descriptors work on 900 art images from several remarkable art periods. On the base of our experiments some suggestions for improving the process of searching and analysis of fine art images are given

    An Analysis of Interactive Technology’s Effect on the Appreciation of Traditional Chinese Painting: A Review of Case Studies

    Get PDF
    From a perspective of safeguarding Intangible Cultural Heritage, this paper discusses how to enhance the appreciation of traditional Chinese painting through the support of interactive technology. The author analyses extensive yet current case studies based on the findings from the interactive appreciation of and engagement with paintings. The author then summarises four aspects of how to design interactive technology in order to support the appreciation of and engagement with traditional Chinese paintings: (1) deepening the aesthetic understanding of traditional Chinese paintings should not be a neglected aspect during the design process; (2) current case studies have not considered distinguishing the user experience between professional artists and amateurs (who are unskilled at painting); (3) it is vital to exploit interactive technology to improve the originality and subtlety of traditional Chinese painting; and (4) employing interactive systems to engage users in participatory appreciation (through encouraging them to talk about art or discussing their understanding of it) could provide potential design insights for future studies

    Monte Carlo convex hull model for classification of traditional Chinese paintings

    Get PDF
    While artists demonstrate their individual styles through paintings and drawings, how to describe such artistic styles well selected visual features towards computerized analysis of the arts remains to be a challenging research problem. In this paper, we propose an integrated feature-based artistic descriptor with Monte Carlo Convex Hull (MCCH) feature selection model and support vector machine (SVM) for characterizing the traditional Chinese paintings and validate its effectiveness via automated classification of Chinese paintings authored by well-known Chinese artists. The integrated artistic style descriptor essentially contains a number of visual features including a novel feature of painting composition and object feature, each of which describes one element of the artistic style. In order to ensure an integrated discriminating power and certain level of adaptability to the variety of artistic styles among different artists, we introduce a novel feature selection method to process the correlations and the synergy across all elements inside the integrated feature and hence complete the proposed style-based descriptor design. Experiments on classification of Chinese paintings via a parallel MCCH model illustrate that the proposed descriptor outperforms the existing representative technique in terms of precision and recall rates

    MCCFNet: multi-channel color fusion network for cognitive classification of traditional Chinese paintings.

    Get PDF
    The computational modeling and analysis of traditional Chinese painting rely heavily on cognitive classification based on visual perception. This approach is crucial for understanding and identifying artworks created by different artists. However, the effective integration of visual perception into artificial intelligence (AI) models remains largely unexplored. Additionally, the classification research of Chinese painting faces certain challenges, such as insufficient investigation into the specific characteristics of painting images for author classification and recognition. To address these issues, we propose a novel framework called multi-channel color fusion network (MCCFNet), which aims to extract visual features from diverse color perspectives. By considering multiple color channels, MCCFNet enhances the ability of AI models to capture intricate details and nuances present in Chinese painting. To improve the performance of the DenseNet model, we introduce a regional weighted pooling (RWP) strategy specifically designed for the DenseNet169 architecture. This strategy enhances the extraction of highly discriminative features. In our experimental evaluation, we comprehensively compared the performance of our proposed MCCFNet model against six state-of-the-art models. The comparison was conducted on a dataset consisting of 2436 TCP samples, derived from the works of 10 renowned Chinese artists. The evaluation metrics employed for performance assessment were Top-1 Accuracy and the area under the curve (AUC). The experimental results have shown that our proposed MCCFNet model significantly outperform all other benchmarking methods with the highest classification accuracy of 98.68%. Meanwhile, the classification accuracy of any deep learning models on TCP can be much improved when adopting our proposed framework

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations
    corecore