13,313 research outputs found

    Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats

    Get PDF
    Low intensity electric fields have been suggested to affect the ongoing neuronal activity in vitro and in human studies. However, the physiological mechanism of how weak electrical fields affect and interact with intact brain activity is not well understood. We performed in vivo extracellular and intracellular recordings from the neocortex and hippocampus of anesthetized rats and extracellular recordings in behaving rats. Electric fields were generated by sinusoid patterns at slow frequency (0.8, 1.25 or 1.7 Hz) via electrodes placed on the surface of the skull or the dura. Transcranial electric stimulation (TES) reliably entrained neurons in widespread cortical areas, including the hippocampus. The percentage of TES phase-locked neurons increased with stimulus intensity and depended on the behavioral state of the animal. TES-induced voltage gradient, as low as 1 mV/mm at the recording sites, was sufficient to phase-bias neuronal spiking. Intracellular recordings showed that both spiking and subthreshold activity were under the combined influence of TES forced fields and network activity. We suggest that TES in chronic preparations may be used for experimental and therapeutic control of brain activity

    What is embodiment? a psychometric approach

    Get PDF
    What is it like to have a body? The present study takes a psychometric approach to this question. We collected structured introspective reports of the rubber hand illusion, to systematically investigate the structure of bodily self-consciousness. Participants observed a rubber hand that was stroked either synchronously or asynchronously with their own hand and then made proprioceptive judgments of the location of their own hand and used Likert scales to rate their agreement or disagreement with 27 statements relating to their subjective experience of the illusion. Principal components analysis of this data revealed four major components of the experience across conditions, which we interpret as: embodiment of rubber hand, loss of own hand, movement, and affect. In the asynchronous condition, an additional fifth component, deafference, was found. Secondary analysis of the embodiment of runner hand component revealed three subcomponents in both conditions: ownership, location, and agency. The ownership and location components were independent significant predictors of proprioceptive biases induced by the illusion. These results suggest that psychometric tools may provide a rich method for studying the structure of conscious experience, and point the way towards an empirically rigorous phenomenology

    LFP beta amplitude is predictive of mesoscopic spatio-temporal phase patterns

    Full text link
    Beta oscillations observed in motor cortical local field potentials (LFPs) recorded on separate electrodes of a multi-electrode array have been shown to exhibit non-zero phase shifts that organize into a planar wave propagation. Here, we generalize this concept by introducing additional classes of patterns that fully describe the spatial organization of beta oscillations. During a delayed reach-to-grasp task in monkey primary motor and dorsal premotor cortices we distinguish planar, synchronized, random, circular, and radial phase patterns. We observe that specific patterns correlate with the beta amplitude (envelope). In particular, wave propagation accelerates with growing amplitude, and culminates at maximum amplitude in a synchronized pattern. Furthermore, the occurrence probability of a particular pattern is modulated with behavioral epochs: Planar waves and synchronized patterns are more present during movement preparation where beta amplitudes are large, whereas random phase patterns are dominant during movement execution where beta amplitudes are small

    Sensorimotor coordination and metastability in a situated HKB model

    Get PDF
    Oscillatory phenomena are ubiquitous in nature and have become particularly relevant for the study of brain and behaviour. One of the simplest, yet explanatorily powerful, models of oscillatory Coordination Dynamics is the Haken–Kelso–Bunz (HKB) model. The metastable regime described by the HKB equation has been hypothesised to be the signature of brain oscillatory dynamics underlying sensorimotor coordination. Despite evidence supporting such a hypothesis, to our knowledge, there are still very few models (if any) where the HKB equation generates spatially situated behaviour and, at the same time, has its dynamics modulated by the behaviour it generates (by means of the sensory feedback resulting from body movement). This work presents a computational model where the HKB equation controls an agent performing a simple gradient climbing task and shows (i) how different metastable dynamical patterns in the HKB equation are generated and sustained by the continuous interaction between the agent and its environment; and (ii) how the emergence of functional metastable patterns in the HKB equation – i.e. patterns that generate gradient climbing behaviour – depends not only on the structure of the agent's sensory input but also on the coordinated coupling of the agent's motor–sensory dynamics. This work contributes to Kelso's theoretical framework and also to the understanding of neural oscillations and sensorimotor coordination

    Drifting perceptual patterns suggest prediction errors fusion rather than hypothesis selection: replicating the rubber-hand illusion on a robot

    Full text link
    Humans can experience fake body parts as theirs just by simple visuo-tactile synchronous stimulation. This body-illusion is accompanied by a drift in the perception of the real limb towards the fake limb, suggesting an update of body estimation resulting from stimulation. This work compares body limb drifting patterns of human participants, in a rubber hand illusion experiment, with the end-effector estimation displacement of a multisensory robotic arm enabled with predictive processing perception. Results show similar drifting patterns in both human and robot experiments, and they also suggest that the perceptual drift is due to prediction error fusion, rather than hypothesis selection. We present body inference through prediction error minimization as one single process that unites predictive coding and causal inference and that it is responsible for the effects in perception when we are subjected to intermodal sensory perturbations.Comment: Proceedings of the 2018 IEEE International Conference on Development and Learning and Epigenetic Robotic

    Oscillations, metastability and phase transitions in brain and models of cognition

    Get PDF
    Neuroscience is being practiced in many different forms and at many different organizational levels of the Nervous System. Which of these levels and associated conceptual frameworks is most informative for elucidating the association of neural processes with processes of Cognition is an empirical question and subject to pragmatic validation. In this essay, I select the framework of Dynamic System Theory. Several investigators have applied in recent years tools and concepts of this theory to interpretation of observational data, and for designing neuronal models of cognitive functions. I will first trace the essentials of conceptual development and hypotheses separately for discerning observational tests and criteria for functional realism and conceptual plausibility of the alternatives they offer. I will then show that the statistical mechanics of phase transitions in brain activity, and some of its models, provides a new and possibly revealing perspective on brain events in cognition

    Spiking Dynamics during Perceptual Grouping in the Laminar Circuits of Visual Cortex

    Full text link
    Grouping of collinear boundary contours is a fundamental process during visual perception. Illusory contour completion vividly illustrates how stable perceptual boundaries interpolate between pairs of contour inducers, but do not extrapolate from a single inducer. Neural models have simulated how perceptual grouping occurs in laminar visual cortical circuits. These models predicted the existence of grouping cells that obey a bipole property whereby grouping can occur inwardly between pairs or greater numbers of similarly oriented and co-axial inducers, but not outwardly from individual inducers. These models have not, however, incorporated spiking dynamics. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity to inducer configurations occur despite irregularities in spike timing across all the interacting cells. Other models have demonstrated spiking dynamics in laminar neocortical circuits, but not how perceptual grouping occurs. The current model begins to unify these two modeling streams by implementing a laminar cortical network of spiking cells whose intracellular temporal dynamics interact with recurrent intercellular spiking interactions to quantitatively simulate data from neurophysiological experiments about perceptual grouping, the structure of non-classical visual receptive fields, and gamma oscillations.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001); Defense Advanced Research Project Agency (HR001-09-C-0011

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies
    corecore