88 research outputs found

    Systemic approaches to incident analysis in aviation: comparison of STAMP, Agent-Based Modelling and Institutions

    Get PDF
    The rapid development and increasing complexity of modern socio-technical systems suggest an urgent need for systemic safety analysis approaches because traditional linear models cannot cope with this complexity. In the aviation safety literature, among systemic accident and incident analysis methods, Systems Theoretic Accident Modelling and Processes (STAMP) and Agent-based modelling (ABM) are the most cited ones. STAMP is a qualitative analysis approach known for its thoroughness and comprehensiveness. Computational ABM approach is a formal quantitative method which proved to be suitable for modelling complex flexible systems. In addition, from a legal point of view, formal systemic institutional modelling potentially provides an interesting contribution to accident and incident analysis. The current work compares three systemic modelling approaches: STAMP, ABM and institutional modelling applied to a case study in an aviation domain

    FRAM for systemic accident analysis: a matrix representation of functional resonance

    Get PDF
    Due to the inherent complexity of nowadays Air Traffic Management (ATM) system, standard methods looking at an event as a linear sequence of failures might become inappropriate. For this purpose, adopting a systemic perspective, the Functional Resonance Analysis Method (FRAM) originally developed by Hollnagel, helps identifying non-linear combinations of events and interrelationships. This paper aims to enhance the strength of FRAM-based accident analyses, discussing the Resilience Analysis Matrix (RAM), a user-friendly tool that supports the analyst during the analysis, in order to reduce the complexity of representation of FRAM. The RAM offers a two dimensional representation which highlights systematically connections among couplings, and thus even highly connected group of couplings. As an illustrative case study, this paper develops a systemic accident analysis for the runway incursion happened in February 1991 at LAX airport, involving SkyWest Flight 5569 and USAir Flight 1493. FRAM confirms itself a powerful method to characterize the variability of the operational scenario, identifying the dynamic couplings with a critical role during the event and helping discussing the systemic effects of variability at different level of analysis

    Reducing Runway Incursions: The Role of Collaboration, Education, and Training

    Get PDF
    Runway incursions are a major threat to aviation safety and can cause major delays and collisions that have significant human and financial implications for airlines. This study investigated how training, education, and collaboration may be improved to reduce the occurrence of runway incursions at airports. Data collection involved interviews, a focus group, and document analysis to explore the participants’ perceptions. The interviews and focus group involved a purposive sample of 12 pilots, air traffic controllers, airport administrators, and ground personnel. The interviews and focus group transcripts were chunked, coded, and patterns sought to form five key themes addressing the research question: exercising key safety practices, effective communication, a greater focus on scenario-based training, need for greater standardization, and more collaboration and partnership among stakeholders. The findings have the potential to influence Federal Aviation Administration’s (FAA) decision-making through resource allocation for improving runway safety, as well as to inform the prevention of runway incursions through improvements to education, training, and collaboration

    The flight of information : new approaches for investigating aviation accident causation

    Get PDF
    The investigation and modelling of aviation accident causation is dominated by linear models. Aviation is, however, a complex system and as such suffers from being artificially manipulated into non-complex models and methods. This thesis addresses this issue by developing a new approach to investigating aviation accident causation through information networks. These networks centralise communication and the flow of information as key indicators of a system‟s health and risk. The holistic approach focuses on the system itself rather than any individual event. The activity and communication of constituent elements, both human and non-human agents, within that system is identified and highlights areas of system failure. The model offers many potential developments and some key areas are studied in this research. Through the centralisation of barriers and information nodes the method can be applied to almost any situation. The application of Bayesian mathematics to historical data populations provides scope for studying error migration and barrier manipulation. The thesis also provides application of these predictions to a flight simulator study in an attempt of validation. Beyond this the thesis also discusses the applicability of the approach to industry. Through working with a legacy airline the methods discussed are used as the basis for a new and forward-thinking safety management system. This holistic approach focuses on the system environment, the activity that takes place within it, the strategies used to conduct this activity, the way in which the constituent parts of the system (both human and non-human) interact and the behaviour required. Each stage of this thesis identifies and expands upon the potential of the information network approach maintaining firm focus on the overall health of a system. It is contended that through the further development and application of this approach, understanding of aviation risk can be improved.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Real-Time Monitoring and Prediction of Airspace Safety

    Get PDF
    The U.S. National Airspace System (NAS) has reached an extremely high level of safety in recent years. However, it will only become more difficult to maintain the current level of safety with the forecasted increase in operations, and so the FAA has been making revolutionary changes to the NAS to both expand capacity and ensure safety. Our work complements these efforts by developing a novel model-based framework for real-time monitoring and prediction of the safety of the NAS. Our framework is divided into two parts: (offline) safety analysis and modeling part, and a real-time (online) monitoring and prediction of safety. The goal of the safety analysis task is to identify hazards to flight (distilled from several national databases) and to codify these hazards within our framework such that we can monitor and predict them. From these we define safety metrics that can be monitored and predicted using dynamic models of airspace operations, aircraft, and weather, along with a rigorous, mathematical treatment of uncertainty. We demonstrate our overall approach and highlight the advantages of this approach over the current state-of-the-art through simulated scenarios

    A Systemic Approach to Next Generation Infrastructure Data Elicitation and Planning Using Serious Gaming Methods

    Get PDF
    Infrastructure systems are vital to the functioning of our society and economy. However, these systems are increasingly complex and are more interdependent than ever, making them difficult to manage. In order to respond to increasing demand, environmental concerns, and natural and man-made threats, infrastructure systems have to adapt and transform. Traditional engineering design approaches and planning tools have proven to be inadequate when planning and managing these complex socio-technical system transitions. The design and implementation of next generation infrastructure systems require holistic methodologies, encompassing organizational and societal aspects in addition to technical factors. In order to do so, a serious gaming based risk assessment methodology is developed to assist infrastructure data elicitation and planning. The methodology combines the use of various models, commercial-off-the-shelf solutions and a gaming approach to aggregate the inputs of various subject matter experts (SMEs) to predict future system characteristics. The serious gaming based approach enables experts to obtain a thorough understanding of the complexity and interdependency of the system while offering a platform to experiment with various strategies and scenarios. In order to demonstrate its abilities, the methodology was applied to National Airspace System (NAS) overhaul and its transformation to Next Generation Air Transportation System (NextGen). The implemented methodology yielded a comprehensive safety assessment and data generation mechanism, embracing the social and technical aspects of the NAS transformation for the next 15 years

    Human-centred design for next generation of air traffic management systems.

    Get PDF
    Designing and deploying air traffic management systems requires an understanding of cognitive ergonomics, system integration, and human-computer interactions. The aim of this research is to develop an effective Human-centred design for Air Navigation Services Providers to permit more effective air traffic controller training and regulations. Therefore, this research consists of both evaluating human-computer interactions on COOPANS Air Traffic Management system and multiple remote tower operations. The COOPANS Alliance is an international cooperation among the air navigation service providers of Austria, Croatia, Denmark, Ireland, Portugal and Sweden with Thales as the industry supplier. The findings of this project indicate that the context-specified design of semantic alerts could improve ATCO’s situational awareness and significantly reduce response time when responding to aircraft conflict resolution alerts. Civil Aviation Authorities, Air Navigation Service Providers and Air Traffic Management System Providers could all benefit from the findings of this research with a view to ensuring that Air Traffic Controllers are provided with the optimal context-specified alerting schemes to increase their situational awareness during both training and operations. The EU Single European Sky initiative was introduced to restructure European airspace and propose innovative measures for air traffic management to achieve the objectives of enhanced cost-efficiency and improved airspace design and airport capacity whilst simultaneously improving safety performance. There is potential to save approximately €2.21 million Euro per annum per installation of remote tower versus traditional control towers. However, ATCO’s visual attention and monitoring performance can be affected by how information is presented, the complexity of the information presented, and the operating environment in the remote tower centre. To achieve resource-efficient and sustainable air navigation services, there is a need to improve the design of human-computer interactions in multiple remote tower technology deployment. These must align with high technology-readiness levels, operators’ practices, industrial developments, and the certification processes of regulators. From a regulatory perspective the results of this project may contribute to European Aviation Safety Agency rulemaking activity for future Air Traffic Management Systems. Overall, the results of this research are in line with the requirements of Single European Sky and facilitate the harmonisation of European ATM systems.PhD in Transport System

    Civil aviation safety in Indonesia

    Full text link
    The aim of the research described in this thesis is to identify factors that contribute to incidents/accident in the Indonesian civil aviation industry. Three studies were undertaken. The first study comprised of an analysis of 97 official accident investigation reports, and was aimed at capturing the nature of the incidents/accidents. The key results are that Indonesia suffers a relatively high accident rate, with the most prevalent accident types being non-fatal Runways Excursions of jet aircraft at main airports, and Controlled Flight Into Terrain accidents in the highlands, these often being fatal. The second study implemented and analysed the results of a survey of 205 professional pilots currently flying in Indonesia, who have four different flight training backgrounds, being expatriate pilots flying for the Indonesian industry, Indonesian commercial pilots, Indonesian ex-military pilots and Australian pilots. The three pilot survey constructs (cockpit management attitude questionnaire/CMAQ, power distance index/PDI and approach and landing attitudes/ALA) are analysed to compare the four groups of pilots, and it is found that Indonesian national pilots from commercial and military backgrounds have a more cavalier and less consistent approach to safety than expatriate and Australian pilots. The last study comprised an analysis of interviews with 27 senior managers of the Indonesian aviation industry, including managers from regulatory bodies, air operators, training schools, the national transportation safety committee/NTSC and the national aviation weather agency. The manager surveys confirm that a substandard safety culture is believed to exist at all levels of management and agency, as well as in airline operations and training. The three following methods: descriptive, analysis of variance (ANOVA) and thematic analysis are applied for each of the study. To triangulate and discuss the core results of the studies, the Human Factors Analysis and Classification System (HFACS) conceptual model is applied, and the Indonesian system is found to have safety deficiencies at all levels including Organisational Influences, Unsafe Supervision, Preconditions of Unsafe Acts and Unsafe Acts. The combination of bad weather and relatively poor pilot training and operation appears to be prevalent

    Framing the FRAM: A literature review on the functional resonance analysis method

    Get PDF
    The development of the Functional Resonance Analysis Method (FRAM) has been motivated by the perceived limitations of fundamentally deterministic and probabilistic approaches to understand complex systems’ behaviour. Congruent with the principles of Resilience Engineering, over recent years the FRAM has been progressively developed in scientific terms, and increasingly adopted in industrial environments with reportedly successful results. Nevertheless, a wide literature review focused on the method is currently lacking. On these premises, this paper aims to summarise all available published research in English about FRAM. More than 1700 documents from multiple scientific repositories were reviewed through a protocol based on the PRISMA review technique. The paper aims to uncover a number of characteristics of the FRAM research, both in terms of the method's application and of the authors contributing to its development. The systematic analysis explores the method in terms of its methodological aspects, application domains, and enhancements in qualitative and quantitative terms, as well as proposing potential future research directions
    • …
    corecore