1,127 research outputs found

    Reappraising GIS from A Tool Perspective

    Get PDF
    Session 3B: Planning and DevelopmentThe past 50 years has seen a rapid development of Geographic Information Systems (GIS) in assisting urban development in multiple fronts. To better release the potentials of GIS as an auxiliary tool for pursuing sustainable built environment, it is necessary to seek a retrospective understanding of GIS’ origins, evolution and capabilities that are closely tied to the chronic problems of urban renewal. Built upon a longitudinal study of interdisciplinary literature, this paper represents an initial conceptual exploration to relate GIS’ capabilities in facilitating complex urban renewal practices whose efficiency and quality of handling multi-sourced information holds the key to project success. Key findings include the classification of three thematic eras of GIS since the 1960s; and the identification of the 3In capabilities of GIS developed in the three eras respectively - intelligence in data synthesis, interoperability with other ICT tools, and interconnection among stakeholders. It is suggested that GIS’ 3In capacities could open a new way of addressing complex urban renewal, but a wider adoption of GIS in this under-developed area will hinge on a number of factors.published_or_final_versio

    A virtual Hub brokering approach for integration of historical and modern maps

    Get PDF
    Geospatial data are today more and more widespread. Many different institutions, such as Geographical Institutes, Public Administrations, collaborative communities (e.g., OSM) and web companies, make available nowadays a large number of maps. Besides this cartography, projects of digitizing, georeferencing and web publication of historical maps have increasingly spread in the recent years. In spite of these variety and availability of data, information overload makes difficult their discovery and management: without knowing the specific repository where the data are stored, it is difficult to find the information required and problems of interconnection between different data sources and their restricted interoperability limit a wide utilization of available geo-data. This paper aims to describe some actions performed to assure interoperability between data, in particular spatial and geographic data, gathered from different data providers, with different features and referring to different historical periods. The article summarizes and exemplifies how, starting from projects of historical map digitizing and Historical GIS implementation, respectively for the Lombardy and for the city of Parma, the interoperability is possible in the framework of the ENERGIC OD project. The European project ENERGIC OD, thanks to a specific component - the virtual hub - based on a brokering framework, copes with the previous listed problems and allows the interoperability between different data sources

    Geopan at@s: A brokering based gateway to georeferenced historical maps for risk analysis

    Get PDF
    Importance of ancient and historical maps is nowadays recognized in many applications (e.g., urban planning, landscape valorisation and preservation, land changes identification, etc.). In the last years a great effort has been done by different institutions, such as Geographical Institutes, Public Administrations, and collaborative communities, for digitizing and publishing online collections of historical maps. In spite of this variety and availability of data, information overload makes difficult their discovery and management: Without knowing the specific repository where the data are stored, it is difficult to find the information required. In addition, problems of interconnection between different data sources and their restricted interoperability may arise. This paper describe a new brokering based gateway developed to assure interoperability between data, in particular georeferenced historical maps and geographic data, gathered from different data providers, with various features and referring to different historical periods. The developed approach is exemplified by a new application named GeoPAN Atl@s that is aimed at linking in Northern Italy area land changes with risk analysis (local seismicity amplification and flooding risk) by using multi-Temporal data sources and historic maps

    3D City Models and urban information: Current issues and perspectives

    Get PDF
    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of current 3D city models, would extend their functionality and usability; therefore, they could serve as integration platforms of the knowledge related to urban and environmental issues allowing a huge and significant improvement of city sustainable management and development. But which elements need to be added to 3D city models? What are the most efficient ways to realize such improvement / enrichment? How to evaluate the usability of these improved 3D city models? These were the questions tackled by the COST Action TU0801 “Semantic enrichment of 3D city models for sustainable urban development”. This book gathers various materials developed all along the four year of the Action and the significant breakthroughs

    Giving life to the map can save more lives. Wildfire scenario with interoperable simulations

    Get PDF
    Abstract. In the Mediterranean region, drier and hotter summers are leading to more likely and severe wildfires. The authors propose an innovative approach for situational awareness by giving life to maps and exploiting interoperable GIS, hazard models, simulations, and interconnection analysis processes aimed to enhance preparedness and strengthen the resilience of responding organizations. The information related to a virtual city and its countryside has been implemented in the terrain of simulation systems. The TIGER wildfire model software has been adapted to a scenario where districts, refugee camps and critical infrastructures can be impacted by a fire and has been linked to a smoke dispersion model, and associated impacts to the electricity network and roads. The transfer of computed fire propagation and combustion data to the AI-powered SWORD simulation enable more accurate computing of damage and loss. In SWORD, civil protection, military assets and humanitarian actions can be performed for training and operation preparation. The simulation data about fire and assets' deployments can feed a web app map or a command and control system, thus providing situational awareness for optimal decision-making, and analysis about people in danger, network interconnections and potential service disruption. Disaster managers and commanders can interact with simulated assets performing their chosen courses of action and analyse the outcomes.In conclusion, tests in a wildfire case study demonstrated a high level of interoperability among those systems and the possibility to provide updated situational awareness leading to better emergency preparedness and critical infrastructure resilience building, finally contributing to save more lives.</p

    A Holistic and Interoperable Approach towards the Implementation of Services for the Digital Transformation of Smart Cities: The Case of Vitoria-Gasteiz (Spain)

    Get PDF
    Cities in the 21st century play a major role in the sustainability and climate impact reduction challenges set by the European agenda. As the population of cities grows and their environmental impact becomes more evident, the European strategy aims to reduce greenhouse gas emissions—the main cause of climate change. Measures to reduce the impact of climate change include reducing energy consumption, improving mobility, harnessing resources and renewable energies, integrating nature-based solutions and efficiently managing infrastructure. The monitoring and control of all this activity is essential for its proper functioning. In this context, Information and Communication Technology (ICT) plays a key role in the digitisation, monitoring, and managing of these different verticals. Urban data platforms support cities on extracting Key Performance Indicators (KPI) in their efforts to make better decisions. Cities must be transformed by applying efficient urban planning measures and taking into account not only technological aspects, but also by applying a holistic vision in building solutions where citizens are at the centre. In addition, standardisation of platforms where applications are integrated as one is necessary. This requires interoperability between different verticals. This article presents the information platform developed for the city of Vitoria-Gasteiz in Spain. The platform is based on the UNE 178104 standard to provide a holistic architecture that integrates information from the different urban planning measures implemented in the city. The platform was constructed in the context of the SmartEnCity project following the urban transformation strategy established by the city. The article presents the value-added solutions implemented in the platform. These solutions have been developed by applying co-creation techniques in which stakeholders have been involved throughout the process. The platform proposes a step forward towards standardization, harmonises the integration of data from multiple vertical, provides interoperability between services, and simplifies scalability and replicability due to its microservice architecture.This work has been supported by the Department of Education, Universities, and Research of the Basque Government under the projects Ikerketa Taldeak (Software and Systems Engineering research group of Mondragon Unibertsitatea) and the European Union’s Horizon 2020 research and innovation programme under the project SmartEnCity with the grant agreement no. 691883

    AN INTEGRATED APPROACH FOR POLLUTION MONITORING: SMART ACQUIREMENT AND SMART INFORMATION

    Get PDF
    Air quality is a factor of primary importance for the quality of life. The increase of the pollutants percentage in the air can cause serious problems to the human and environmental health. For this reason it is essential to monitor its values to prevent the consequences of an excessive concentration, to reduce the pollution production or to avoid the contact with major pollutant concentration through the available tools. Some recently developed tools for the monitoring and sharing of the data in an effective system permit to manage the information in a smart way, in order to improve the knowledge of the problem and, consequently, to take preventing measures in favour of the urban air quality and human health. In this paper, the authors describe an innovative solution that implements geomatics sensors (GNSS) and pollutant measurement sensors to develop a low cost sensor for the acquisition of pollutants dynamic data using a mobile platform based on bicycles. The acquired data can be analysed to evaluate the local distribution of pollutant density and shared through web platforms that use standard protocols for an effective smart use

    Web-based Archaeology and Collaborative Research

    Get PDF
    While digital technologies have been part of archaeology for more than fifty years, archaeologists still look for more efficient methodologies to integrate digital practices of fieldwork recording with data management, analysis, and ultimately interpretation.This Special Issue of the Journal of Field Archaeology gathers international scholars affiliated with universities, organizations, and commercial enterprises working in the field of Digital Archaeology. Our goal is to offer a discussion to the international academic community and practitioners. While the approach is interdisciplinary, our primary audience remains readers interested in web technology and collaborative platforms in archaeolog

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications
    • 

    corecore