499 research outputs found

    A Novel Technique for Selecting EMG-Contaminated EEG Channels in Self-Paced Brain-Computer Interface Task Onset

    Get PDF
    Electromyography artefacts are a well-known problem in Electroencephalography studies (BCIs, brain mapping, and clinical areas). Blind source separation (BSS) techniques are commonly used to handle artefacts. However, these may remove not only EMG artefacts but also some useful EEG sources. To reduce this useful information loss, we propose a new technique for statistically selecting EEG channels that are contaminated with class-dependent EMG (henceforth called EMG-CCh). Methods: The EMG-CCh are selected based on the correlation between EEG and facial EMG channels. They were compared (using a Wilcoxon test) to determine whether the artefacts played a significant role in class separation. To ensure that promising results are not due to weak EMG removal, reliability tests were done. Results: In our data set, the comparison results between BSS artefact removal applied in two ways, to all channels and only to EMG-CCh, showed that ICA, PCA and BSS-CCA can yield significantly better (p<0.05) class separation with the proposed method (79% of the cases for ICA, 53% for PCA and 11% for BSS-CCA). With BCI competition data, we saw improvement in 60% of the cases for ICA and BSS-CCA. Conclusion: The simple method proposed in this paper showed improvement in class separation with both our data and the BCI competition data. Significance: There are no existing methods for removing EMG artefacts based on the correlation between EEG and EMG channels. Also, the EMG-CCh selection can be used on its own or it can be combined with pre-existing artefact handling methods. For these reasons, we believe this method can be useful for other EEG studies

    Investigation into BCI illiteracy and the use of BCI for relaxation

    Get PDF

    Robust Brain-computer interface for virtual Keyboard (RoBIK): project results

    Get PDF
    Special issue : ANR TECSAN : Technologies for Health and AutonomyNational audienceBrain-ComputerInterface (BCI)is a technology that translatesthe brain electrical activity into a command for a device such as a robotic arm, a wheelchair or a spelling device. BCIs have long been described as an assistive technology forseverely disabled patients because they completely bypass the need for muscular activity. The clinical reality is however dramatically different and most patients who use BCIs today are doing so as part of constraining clinical trials. To achieve the technological transfer from bench to bedside, BCI must gain ease of use and robustness of bothmeasure (electroencephalography [EEG]) and interface (signal processing and applications).TheRobustBrain-computerInterface for virtual Keyboard (RoBIK) project aimed atthe development of aBCIsystemfor communication that could be used on a daily basis by patientswithoutthe help of a trained teamofresearchers.To guide further developments cliniciansfirst assessed patients' needs.The prototype subsequently developed consisted in a 14 felt-pad electrodes EEG headsetsampling at 256Hz by an electronic component capable of transmitting signals wirelessly. The application was a virtual keyboard generating a novelstimulation paradigm to elicit P300 Evoked Related Potentials(ERPs) for communication. Raw EEG signals were treated with OpenViBE open-source software including novelsignal processing and stimulation techniques

    Online Extraction and Single Trial Analysis of Regions Contributing to Erroneous Feedback Detection

    Get PDF
    International audienceUnderstanding how the brain processes errors is an essential and active field of neuroscience. Real time extraction and analysis of error signals provide an innovative method of assessing how individuals perceive ongoing interactions without recourse to overt behaviour. This area of research is critical in modern Brain–Computer Interface (BCI) design, but may also open fruitful perspectives in cognitive neuroscience research. In this context, we sought to determine whether we can extract discriminatory error-related activity in the source space, online, and on a trial by trial basis from electroencephalography data recorded during motor imagery. Using a data driven approach, based on interpretable inverse solution algorithms, we assessed the extent to which automatically extracted error-related activity was physiologically and functionally interpretable according to performance monitoring literature. The applicability of inverse solution based methods for automatically extracting error signals, in the presence of noise generated by motor imagery, was validated by simulation. Representative regions of interest, outlining the primary generators contributing to classification, were found to correspond closely to networks involved in error detection and performance monitoring. We observed discriminative activity in non-frontal areas, demonstrating that areas outside of the medial frontal cortex can contribute to the classification of error feedback activity

    Cortical excitability correlates with the event-related desynchronization during brain-computer interface control

    Get PDF
    Objective Brain-computer interfaces (BCIs) based on motor control have been suggested as tools for stroke rehabilitation. Some initial successes have been achieved with this approach, however the mechanism by which they work is not yet fully understood. One possible part of this mechanism is a, previously suggested, relationship between the strength of the event-related desynchronization (ERD), a neural correlate of motor imagination and execution, and corticospinal excitability. Additionally, a key component of BCIs used in neurorehabilitation is the provision of visual feedback to positively reinforce attempts at motor control. However, the ability of visual feedback of the ERD to modulate the activity in the motor system has not been fully explored. Approach We investigate these relationships via transcranial magnetic stimulation delivered at different moments in the ongoing ERD related to hand contraction and relaxation during BCI control of a visual feedback bar. Main results We identify a significant relationship between ERD strength and corticospinal excitability, and find that our visual feedback does not affect corticospinal excitability. Significance Our results imply that efforts to promote functional recovery in stroke by targeting increases in corticospinal excitability may be aided by accounting for the time course of the ERD

    A novel onset detection technique for brain?computer interfaces using sound-production related cognitive tasks in simulated-online system

    Get PDF
    Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies?Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs

    A fast approach to removing muscle artifacts for EEG with signal serialization based Ensemble Empirical Mode Decomposition

    Get PDF
    An electroencephalogram (EEG) is an electrophysiological signal reflecting the functional state of the brain. As the control signal of the brain-computer interface (BCI), EEG may build a bridge between humans and computers to improve the life quality for patients with movement disorders. The collected EEG signals are extremely susceptible to the contamination of electromyography (EMG) artifacts, affecting their original characteristics. Therefore, EEG denoising is an essential preprocessing step in any BCI system. Previous studies have confirmed that the combination of ensemble empirical mode decomposition (EEMD) and canonical correlation analysis (CCA) can effectively suppress EMG artifacts. However, the time-consuming iterative process of EEMD limits the application of the EEMD-CCA method in real-time monitoring of BCI. Compared with the existing EEMD, the recently proposed signal serialization based EEMD (sEEMD) is a good choice to provide effective signal analysis and fast mode decomposition. In this study, an EMG denoising method based on sEEMD and CCA is discussed. All of the analyses are carried out on semi-simulated data. The results show that, in terms of frequency and amplitude, the intrinsic mode functions (IMFs) decomposed by sEEMD are consistent with the IMFs obtained by EEMD. There is no significant difference in the ability to separate EMG artifacts from EEG signals between the sEEMD-CCA method and the EEMD-CCA method (p > 0.05). Even in the case of heavy contamination (signal-to-noise ratio is less than 2 dB), the relative root mean squared error is about 0.3, and the average correlation coefficient remains above 0.9. The running speed of the sEEMD-CCA method to remove EMG artifacts is significantly improved in comparison with that of EEMD-CCA method (p < 0.05). The running time of the sEEMD-CCA method for three lengths of semi-simulated data is shortened by more than 50%. This indicates that sEEMD-CCA is a promising tool for EMG artifact removal in real-time BCI systems.Fil: Dai, Yangyang. Nankai University; ChinaFil: Duan, Feng. Nankai University; ChinaFil: Feng, Fan. Nankai University; ChinaFil: Sun, Zhe. RIKEN; JapónFil: Zhang, Yu. Lehigh University Bethlehem; Estados UnidosFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Marti Puig, Pere. Central University of Catalonia; EspañaFil: Solé Casals, Jordi. Central University of Catalonia; Españ

    Implicit relevance feedback from electroencephalography and eye tracking in image search

    Get PDF
    Objective. Methods from brain–computer interfacing (BCI) open a direct access to the mental processes of computer users, which offers particular benefits in comparison to standard methods for inferring user-related information. The signals can be recorded unobtrusively in the background, which circumvents the time-consuming and distracting need for the users to give explicit feedback to questions concerning the individual interest. The obtained implicit information makes it possible to create dynamic user interest profiles in real-time, that can be taken into account by novel types of adaptive, personalised software. In the present study, the potential of implicit relevance feedback from electroencephalography (EEG) and eye tracking was explored with a demonstrator application that simulated an image search engine. Approach. The participants of the study queried for ambiguous search terms, having in mind one of the two possible interpretations of the respective term. Subsequently, they viewed different images arranged in a grid that were related to the query. The ambiguity of the underspecified search term was resolved with implicit information present in the recorded signals. For this purpose, feature vectors were extracted from the signals and used by multivariate classifiers that estimated the intended interpretation of the ambiguous query. Main result. The intended interpretation was inferred correctly from a combination of EEG and eye tracking signals in 86% of the cases on average. Information provided by the two measurement modalities turned out to be complementary. Significance. It was demonstrated that BCI methods can extract implicit user-related information in a setting of human-computer interaction. Novelties of the study are the implicit online feedback from EEG and eye tracking, the approximation to a realistic use case in a simulation, and the presentation of a large set of photographies that had to be interpreted with respect to the content.EC/FP7/611570/EU/Symbiotic Mind Computer Interaction for Information Seeking/MindSeeBMBF, 01GQ0850, Bernstein Fokus Neurotechnologie - Nichtinvasive Neurotechnologie für Mensch-Maschine Interaktio

    Decomposition and classification of electroencephalography data

    Get PDF
    corecore