29 research outputs found

    Towards COP27: The Water-Food-Energy Nexus in a Changing Climate in the Middle East and North Africa

    Get PDF
    Due to its low adaptability to climate change, the MENA region has become a "hot spot". Water scarcity, extreme heat, drought, and crop failure will worsen as the region becomes more urbanized and industrialized. Both water and food scarcity are made worse by civil wars, terrorism, and political and social unrest. It is unclear how climate change will affect the MENA water–food–energy nexus. All of these concerns need to be empirically evaluated and quantified for a full climate change assessment in the region. Policymakers in the MENA region need to be aware of this interconnection between population growth, rapid urbanization, food safety, climate change, and the global goal of lowering greenhouse gas emissions (as planned in COP27). Researchers from a wide range of disciplines have come together in this SI to investigate the connections between water, food, energy, and climate in the region. By assessing the impacts of climate change on hydrological processes, natural disasters, water supply, energy production and demand, and environmental impacts in the region, this SI will aid in implementation of sustainable solutions to these challenges across multiple spatial scales

    Urban Runoff Control and Sponge City Construction

    Get PDF
    The rapid urbanization, sometimes lacking adequate planning and design, has led to worsening city syndrome situations, such as urban flooding, water pollution, heat island effects, and ecologic deterioration. Sponge city construction have become the new paradigm for a sustainable urban stormwater management strategy. Deviating from the traditional rapid draining approach, the new paradigm calls for the use of natural systems, such as soil and vegetation, as part of the urban runoff control strategy. It has become a widespread focus in urban water management research and practices globally. In this Special Issue reprint, there are 13 original scientific articles that address the different related urban runoff control issues. We are happy to see that all papers presented findings characterized as innovative and methodologically new. We hope that the readers can enjoy and learn deeply about urban runoff control and sponge city construction using the published material, and we hope that sharing of the researches results with the scientific community, policymakers and stakeholders can prompt the urban runoff control and sponge city construction globally

    Integrated Water Resources Research

    Get PDF
    Anthropogenic and natural disturbances to freshwater quantity and quality are a greater issue for society than ever before. To successfully restore water resources requires understanding the interactions between hydrology, climate, land use, water quality, ecology, and social and economic pressures. This Special Issue of Water includes cutting edge research broadly addressing investigative areas related to experimental study designs and modeling, freshwater pollutants of concern, and human dimensions of water use and management. Results demonstrate the immense, globally transferable value of the experimental watershed approach, the relevance and critical importance of current integrated studies of pollutants of concern, and the imperative to include human sociological and economic processes in water resources investigations. In spite of the latest progress, as demonstrated in this Special Issue, managers remain insufficiently informed to make the best water resource decisions amidst combined influences of land use change, rapid ongoing human population growth, and changing environmental conditions. There is, thus, a persistent need for further advancements in integrated and interdisciplinary research to improve the scientific understanding, management, and future sustainability of water resources

    TOWARDS IMPROVED HYDROLOGIC LAND SURFACE MODELLING: ENHANCED MODEL IDENTIFICATION AND INTEGRATION OF WATER MANAGEMENT

    Get PDF
    Large-scale hydrological models are essential tools for addressing emerging water security challenges. They enable us to understand and predict changes in water cycle at river-basin, continental, and global scales. This thesis aimed to improve ‘land surface models’ for large-scale hydrological modelling applications. Specifically, the research contributions were made across four fronts: (1) improving the conventional procedure for parameter identification of hydrological processes by using new sources of remotely-sensed data in addition to streamflow data within a multi-objective optimization and sensitivity analysis framework, (2) developing and integrating an efficient parameterization scheme for the representation of reservoirs into the land surface model for realistic representation of downstream flows, which can further feedback to land surface and atmospheric models, (3) demonstrating how precipitation uncertainty from multiple high-resolution precipitation products influences the performance of a land-surface based hydrological model, and (4) developing an enhanced and comprehensive large-scale hydrologic model for a complex and heavily regulated watershed. The analyses and results of this thesis illuminated important issues and their solutions in large-scale hydrological modelling. First, the multi-objective optimization and sensitivity analysis approach using multiple state and flux variables and performance criteria enables robust model parameterization and lessens issues around parameter equifinality in the highly-parameterized land surface models. Second, the dynamic parameterization of reservoir operation, based on multiple storage zones and reservoir release targets, improves the simulation of reservoir storage dynamics and downstream release, and subsequently, significantly improves the fidelity of land surface models when modeling managed basins. Third, there is a critical need for a rigorous evaluation of precipitation datasets widely used for forcing land surface models. The datasets investigated here showed considerable discrepancies, bringing their utility for land surface modelling into question. Fourth, effective parameterization and calibration of land surface models is critically important, particularly in large, complex, and highly-regulated basins

    River Ecological Restoration and Groundwater Artificial Recharge

    Get PDF
    Three of the eleven papers focused on groundwater recharge and its impacts on the groundwater regime, in which recharge was caused by riverbed leakage from river ecological restoration (artificial water replenishment). The issues of the hydrogeological parameters involved (such as the influence radius) were also reconsidered. Six papers focused on the impact of river ecological replenishment and other human activities on river and watershed ecology, and on groundwater quality and use function. The issues of ecological security at the watershed scale and deterioration of groundwater quality were of particular concern. Two papers focused on water resources carrying capacity and water resources reallocation at the regional scale, in the context of the fact that ecological water demand has been a significant topic of concern. The use of unconventional water resources such as brackish water has been emphasized in the research in this issue

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Celebrating 25 Years of World Wetlands Day

    Get PDF
    The purpose of this Special Issue is to celebrate 25 years of “World Wetlands Day”. There is no other ecosystem that has its very own Ramsar Convention or such a challenge impacting ecosystem sustainability. Papers for this Special Issue provide an overview of wetland status and function within different regions of the world. The papers in this Special Issue of Land consist of three review papers, ten research articles and one perspective paper. Edward Maltby’s review paper provides us with an overview of the paradigm shift of how we value and assess wetlands over time. Ballut-Dajud et al. provide us with a worldwide perspective on factors affecting wetland loss. Finally, Jan Vymazal provides us with a historical overview of the development of water quality treatment wetlands in Europe and North America. The research papers can be grouped into four groups: 1) use of remote sensing to analyze stability and dynamic factors affecting wetlands; 2) factors affecting the wetlands’ ability to store carbon; 3) assessment of wetlands effect on water quality; and 4) understanding historical use and value of wetlands, farmer’s attitudes about wetland management, and how we can value wetland ecosystem services. Finally, Bryzek et al. remind us that, as wetland researchers and managers, we should minimize damage to wetlands even through field monitoring work

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions
    corecore