97 research outputs found

    Temporal and spatial change of habitat quality and its driving forces: The case of Tacheng region, China

    Get PDF
    Habitat quality assessment is an important basis for ecological restoration practice. Taking the Tacheng region as an example, the InVEST model was used to evaluate the habitat quality of the Tacheng region in five periods from 2000 to 2020, and analyze the reasons for its changes, to provide theoretical guidance for ecological restoration practice in arid areas. The conclusions were that from 2000 to 2020, the habitat quality in the Tacheng region improved slightly, and the value of the habitat index in the Tacheng region was the highest in 2010, which was 0.577, and then decreased slightly. The habitat quality in the Tacheng region was significantly influenced by land use type conversion and precipitation. The change in land use type directly affected the change in habitat quality. The study region is located in an arid area; the forest land and grassland native to the region have more vegetation communities and genera of species and can be self-sustaining and resilient to disturbance, having high scores for habitat quality. The species of arable land is a monoculture; it cannot be self-sustaining and resilient to disturbance, and though it has high vegetation cover, the value of habitat quality is lower than that of forestland and grassland. The vegetation of unused land is rare, and the ecosystem of unused land is sensitive and vulnerable; the habitat quality scores are very low. The conversion of forest land, grassland, arable land, and unused land would directly affect the value of habitat quality, and conversion was the main factor affecting the change in habitat quality. In addition, precipitation was also an important factor affecting the change in habitat quality in the Tacheng region, which affected the biomass of natural vegetation and then affected the habitat quality. The results provided the temporal and spatial change of habitat quality and its driving forces in the Tacheng region, which helps determine appropriate measures and sites in ecological restoration projects

    Using SPOT-VGT NDVI as a successive ecological indicator for understanding the environmental implications in the Tarim River Basin, China

    Get PDF
    The resilience and vulnerability of terrestrial ecosystem in the Tarim River Basin, Xinjiang is critical in sustainable development of the northwest region in China. To learn more about causes of the ecosystem evolution in this wide region, vegetation dynamics can be a surrogate indicator of environmental responses and human perturbations. This paper aims to use the inter-annual and intra-annual coefficient of variation (CoV) derived by the SPOT-VGT Normalized Difference Vegetation Index (NDVI) as an integrated measure of vegetation dynamics to address the environmental implications in response to climate change. To finally pin down the vegetation dynamics, the intra-annual CoV based on monthly NDVI values and the inter-annual CoV based on seasonally accumulated NDVI values were respectively calculated. Such vegetation dynamics can then be associated with precipitation patterns extracted from the Tropical Rainfall Measuring Mission (TRMM) data and irrigation efforts reflecting the cross-linkages between human society and natural systems. Such a remote sensing analysis enables us to explore the complex vegetation dynamics in terms of distribution and evolution of the collective features of heterogeneity over local soil characteristics, climate change impacts, and anthropogenic activities at differing space and time scales. Findings clearly indicate that the vegetation changes had an obvious trend in some high mountainous areas as a result of climate change whereas the vegetation changes in fluvial plains reflected the increasing evidence of human perturbations due to anthropogenic activities. Some possible environmental implications were finally elaborated from those cross-linkages between economic development and resources depletion in the context of sustainable development

    The spatiotemporal response of soil moisture to precipitation and temperature changes in an arid region, China

    Get PDF
    Soil moisture plays a crucial role in the hydrological cycle and climate system. The reliable estimation of soil moisture in space and time is important to monitor and even predict hydrological and meteorological disasters. Here we studied the spatiotemporal variations of soil moisture and explored the effects of precipitation and temperature on soil moisture in different land cover types within the Tarim River Basin from 2001 to 2015, based on high-spatial-resolution soil moisture data downscaled from the European Space Agency's (ESA) Climate Change Initiative (CCI) soil moisture data. The results show that the spatial average soil moisture increased slightly from 2001 to 2015, and the soil moisture variation in summer contributed most to regional soil moisture change. For the land cover, the highest soil moisture occurred in the forest and the lowest value was found in bare land, and soil moisture showed significant increasing trends in grassland and bare land during 2001 similar to 2015. Both partial correlation analysis and multiple linear regression analysis demonstrate that in the study area precipitation had positive effects on soil moisture, while temperature had negative effects, and precipitation made greater contributions to soil moisture variations than temperature. The results of this study can be used for decision making for water management and allocation

    Evaluating the variation characteristics of ecological resilience along expressways in developing countries: the case of the Phnom Penh-Sihanoukville Expressway in Cambodia

    Get PDF
    Expressway construction has caused a significant threat to the ecological environment in developing countries, and therefore the variation characteristics of ecological resilience along the expressway in developing countries are of major importance. This empirical study focuses on a typical area within a 2-km range of the Phnom Penh-Sihanoukville Expressway in Cambodia and uses remote sensing and geographic information systems (GIS) technology to analyze the variation characteristics of ecological resilience along the expressway. The results of the study reveal that due to the construction of expressways, the land use types transferred into or out of the land use types increase and furthermore the land use types show a trend of decreasing natural attributes and increasing human attributes. It is found that expressway construction has an observed effect on the transfer rate of the center of gravity of land use type, and the direction of the center of gravity shifts in the direction of expressway construction. The impact of construction on the ecological resilience of the western region with higher vegetation coverage was higher than that of the eastern region with higher urbanization. The research develops a theoretical evaluation model based on land use type of the variation characteristics of ecological resilience along the expressway, which can be used to enable the sustainability of expressway construction and maintain the regional ecological environment

    Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data

    Get PDF
    Understanding the impacts of environmental factors on spatial–temporal and large-scale rodent distribution is important for rodent damage prevention. Investigating rat hole density (RHD) is one of the most effective methods to obtain the intensity of rodent damage. However, most of the previous field surveys or UAV-based remote sensing methods can only evaluate small-scale RHD and its influencing factors. However, these studies did not consider large-scale temporal and spatial heterogeneity. Therefore, we collected small-scale and in situ measurement records of RHD on the northern slope of the Tien Shan Mountains in Xinjiang (NTXJ), China, from 1982 to 2015, and then used correlation analysis and Bayesian network (BN) to analyze the environmental impacts on large-scale RHD with satellite remote sensing data such as the GIMMS NDVI product. The results show that the built BN can better quantify causality in the environmental mechanism modeling of RHD. The NDVI and LAI data from satellite remote sensing are important to the spatial–temporal RHD distribution and the mapping in the future. In regions with an elevation higher than 600 m (UPR) and lower than 600 m (LWR) of NTXJ, there are significant differences in the driving mechanism patterns of RHD, which are dependent on the elevation variation. In LWR, vegetation conditions have a weaker impact on RHD than UPR. It is possibly due to the Artemisia eaten by the dominant species Lagurus luteus (LL) in UPR being more sensitive to precipitation and temperature if compared with the Haloxylon ammodendron eaten by the Rhombomys opimus (RO) in LWR. In LWR, grazing intensity is more strongly and positively correlated to RHD than UPR, possibly due to both winter grazing and RO dependency on vegetation distribution; moreover, in UPR, sheep do not feed Artemisia as the main food, and the total vegetation is sufficient for sheep and LL to coexist. Under the different conditions of water availability of LWR and UPR, grazing may affect the ratio of aboveground and underground biomass by photosynthate allocation, thereby affecting the distribution of RHD. In extremely dry years, the RHD of LWR and UPR may have an indirect interactive relation due to changes in grazing systems

    Evidence of elevation-dependent warming from the Chinese Tian Shan

    Get PDF
    The phenomenon in which the warming rate of air temperature is amplified with elevation is termed elevation-dependent warming (EDW). It has been clarified that EDW can accelerate the retreat of glaciers and melting of snow, which can have significant impacts on the regional ecological environment. Owing to the lack of high-density ground observations in high mountains, there is widespread controversy regarding the existence of EDW. Current evidence is mainly derived from typical high-mountain regions such as the Swiss Alps, the Colorado Rocky Mountains, the tropical Andes and the Tibetan Plateau–Himalayas. Rare evidence in other mountain ranges has been reported, especially in arid regions. In this study, EDW features (regional warming amplification and altitude warming amplification) in the Chinese Tian Shan (CTM) were detected using a unique high-resolution (1 km, 6-hourly) air temperature dataset (CTMD) from 1979 to 2016. The results showed that there were significant EDW signals at different altitudes on different timescales. The CTM showed significant regional warming amplification in spring, especially in March, and the warming trends were greater than those of continental China with respect to three temperatures (minimum temperature, mean temperature and maximum temperature). The significance values of EDW above different altitude thresholds are distinct for three temperatures in 12 months. The warming rate of the minimum temperature in winter showed a significant elevation dependence (p<0.01), especially above 3000 m. The greatest altitudinal gradient in the warming rate of the maximum temperature was found above 4000 m in April. For the mean temperature, the warming rates in June and August showed prominent altitude warming amplification but with different significance above 4500 m. Within the CTM, the Tolm Mountains, the eastern part of the Borokoonu Mountains, the Bogda Mountains and the Balikun Mountains are representative regions that showed significant altitude warming amplification on different timescales. This new evidence could partly explain the accelerated melting of snow in the CTM, although the mechanisms remain to be explored

    Impact of climate variability on hydrological processes in the Kaidu River Basin (China)

    Get PDF

    Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-arid Areas

    Get PDF
    This Special Issue (SI) aims to investigate the relationships between hydrological and ecological processes and how these interactions can contribute to the optimization of water resources in arid and semi-arid areas. This SI collected 10 original contributions on sustainable land management and the optimization of water resources in fragile environments that are at elevated risk due to climate change. The topics mainly concern transpiration, evapotranspiration, groundwater recharge, deep percolation, and related issues. The collection of manuscripts presented in this SI represents a contribution of knowledge in ecohydrology
    • …
    corecore