162 research outputs found

    Testing QoE in Different 3D HDTV Technologies

    Get PDF
    The three dimensional (3D) display technology has started flooding the consumer television market. There is a number of different systems available with different marketing strategies and different advertised advantages. The main goal of the experiment described in this paper is to compare the systems in terms of achievable Quality of Experience (QoE) in different situations. The display systems considered are the liquid crystal display using polarized light and passive lightweight glasses for the separation of the left- and right-eye images, a plasma display with time multiplexed images and active shutter glasses and a projection system with time multiplexed images and active shutter glasses. As no standardized test methodology has been defined for testing of stereoscopic systems, we develop our own approach to testing different aspects of QoE on different systems without reference using semantic differential scales. We present an analysis of scores with respect to different phenomena under study and define which of the tested aspects can really express a difference in the performance of the considered display technologies

    Perceptual modelling for 2D and 3D

    Get PDF
    Livrable D1.1 du projet ANR PERSEECe rapport a Ć©tĆ© rĆ©alisĆ© dans le cadre du projet ANR PERSEE (nĀ° ANR-09-BLAN-0170). Exactement il correspond au livrable D1.1 du projet

    Visual experience of 3D TV

    Get PDF

    Metrics for Stereoscopic Image Compression

    Get PDF
    Metrics for automatically predicting the compression settings for stereoscopic images, to minimize file size, while still maintaining an acceptable level of image quality are investigated. This research evaluates whether symmetric or asymmetric compression produces a better quality of stereoscopic image. Initially, how Peak Signal to Noise Ratio (PSNR) measures the quality of varyingly compressed stereoscopic image pairs was investigated. Two trials with human subjects, following the ITU-R BT.500-11 Double Stimulus Continuous Quality Scale (DSCQS) were undertaken to measure the quality of symmetric and asymmetric stereoscopic image compression. Computational models of the Human Visual System (HVS) were then investigated and a new stereoscopic image quality metric designed and implemented. The metric point matches regions of high spatial frequency between the left and right views of the stereo pair and accounts for HVS sensitivity to contrast and luminance changes in these regions. The PSNR results show that symmetric, as opposed to asymmetric stereo image compression, produces significantly better results. The human factors trial suggested that in general, symmetric compression of stereoscopic images should be used. The new metric, Stereo Band Limited Contrast, has been demonstrated as a better predictor of human image quality preference than PSNR and can be used to predict a perceptual threshold level for stereoscopic image compression. The threshold is the maximum compression that can be applied without the perceived image quality being altered. Overall, it is concluded that, symmetric, as opposed to asymmetric stereo image encoding, should be used for stereoscopic image compression. As PSNR measures of image quality are correctly criticized for correlating poorly with perceived visual quality, the new HVS based metric was developed. This metric produces a useful threshold to provide a practical starting point to decide the level of compression to use

    Augmented reality fonts with enhanced out-of-focus text legibility

    Get PDF
    In augmented reality, information is often distributed between real and virtual contexts, and often appears at different distances from the viewer. This raises the issues of (1) context switching, when attention is switched between real and virtual contexts, (2) focal distance switching, when the eye accommodates to see information in sharp focus at a new distance, and (3) transient focal blur, when information is seen out of focus, during the time interval of focal distance switching. This dissertation research has quantified the impact of context switching, focal distance switching, and transient focal blur on human performance and eye fatigue in both monocular and binocular viewing conditions. Further, this research has developed a novel font that when seen out-of-focus looks sharper than standard fonts. This SharpView font promises to mitigate the effect of transient focal blur. Developing this font has required (1) mathematically modeling out-of-focus blur with Zernike polynomials, which model focal deficiencies of human vision, (2) developing a focus correction algorithm based on total variation optimization, which corrects out-of-focus blur, and (3) developing a novel algorithm for measuring font sharpness. Finally, this research has validated these fonts through simulation and optical camera-based measurement. This validation has shown that, when seen out of focus, SharpView fonts are as much as 40 to 50% sharper than standard fonts. This promises to improve font legibility in many applications of augmented reality

    Light-field head-mounted displays reduce the visual effort: A user study

    Get PDF
    Head-mounted displays (HMD) allow the visualization of virtual content and the change of view perspectives in a virtual reality (VR). Besides entertainment purposes, such displays also find application in augmented reality, VR training or tele-robotic systems. The quality of visual feedback plays a key role for the interaction performance in such setups. In the last years, high-end computers and displays led to the reduction of simulator sickness regarding nausea symptoms, while new visualization technologies are required to further reduce oculomotor and disorientation symptoms. The so-called vergence-accommodation conflict (VAC) in standard stereoscopic displays prevents intense use of 3D displays, so far. The VAC describes the visual mismatch between the projected stereoscopic 3D image and the optical distance to the HMD screen. This conflict can be solved by using displays with correct focal distance. The light-field HMD of this study provides a close-to-continuous depth and high image resolution enabling a highly natural visualization. This paper presents the first user-study on the visual comfort of light-field displays with a close-to-market HMD based on complex interaction tasks. The results provide first evidence that the light-field technology brings clear benefits to the user in terms of physical use comfort, workload and depth matching performance
    • ā€¦
    corecore