1,414 research outputs found

    Sustainable use and production of energy in the 21st century

    Full text link
    It is foreseen that oil and gas will continue to be the key energy sources in the 21st century. Therefore, it is important that oil and gas be produced in a sustainable way during the next decades. This requires technology development to ensure that the environmental impact and pollution from these activities are minimal. The following aspects are being highlighted in this paper: • Development of projects with the minimum of impact on the environment and problems for local populations. • Sustainable drilling without the use of oil-based mud, and collection of all drilling waste during offshore drilling operations in the most environmentally sensitive areas. • Treatment of produced water, sand and minerals from the well stream to avoid pollution. • Limitation of flaring to be performed only when required for safety reasons. • Continuous checking of pipelines to ensure that gas pipelines are run within their actual pressure capacity and that oil pipelines are not leaking into rivers and lakes. • Provision of sufficient storage capacity for gas to ensure timely delivery of gas during high demand peaks. • Injection of CO2 into sealed underground formations where large quantities are produced, such as at LNG factories. • Optimization of production from existing fields to avoid huge amounts of oil and gas being left in place, following a ‘hit and run’ recovery plan. Furthermore, all primary energy sources need to be converted into end-user energy services known as mechanical work, electricity, heating and cooling. In the process of conversion, only a portion of the primary energy is transformed into the new form, while the rest remains unaltered and is lost. The various forms of energy services produced represent different values or qualities, e.g. heat holds an energy quality ranging from 0 and upwards, depending on the temperature difference which is utilized, as defined by the second law of thermodynamics. Energy efficiency in this context may also be defined as the ratio between energy quality output and input. Practically, all fossil fuels are converted into energy services via combustion and heat, i.e. the conversion efficiency is solely determined by temperatures, meaning that high-energy efficiency can only be obtained at large temperature differences, such as in power generation, while ordinary domestic heating will yield a very low efficiency. Given that some 30–40 % of all fossil fuels today are used for domestic heating, representing an end-user energy quality of (say) 1/10 of what is obtained in modern power generation, there is a large potential globally for energy efficiency improvements, not to mention the associated emission reductions. The obvious solution is to pay more attention to the second law of thermodynamics, i.e. to shift from direct combustion heating to thermodynamic principles, e.g. by the use of electrical-driven heat pumps and/or combined heat and power as another alternative. The objectives of this paper are to highlight how energy production could become more effective, thus leading to a reduction in pollution to land, sea and atmosphere and also to identify how energy production should be carried out to minimize the polluting effects. The goal is to provide a reminder that much can be gained with respect to the reduction of pollution by focusing on cleaner energy production

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Distribution and health risk evaluation of heavy metal lead in the main production area of rice in Heilongjiang Province

    Get PDF
    Abstract In order to explore the distribution and transfer of lead elements in soil and rice in the five regions of Chahayang, Wuchang, Fangzheng, Xiangshui and Jiansanjiang in Heilongjiang Province, and analyze the impact of rice intake on human health, the samples were tested by ICP-MS. Modeling the lead-element transfer in the soil-rice system, using the Nemero comprehensive pollution index method and the health risk assessment model to evaluate the lead pollution status of rice in the study area and its health risks to adults and children. The results showed that the average content of lead in rice in the study area was Chahayang 0.02 mg/kg, Wuchang 0.03 mg/kg, Fangzheng 0.017 mg/kg, Xiangshui 0.023 mg/kg and Jiansanjiang. 0.024 mg/kg did not exceed the lead content limit specified by China's National Food Hygiene Standard (0.2 mg/kg); Based on the prediction model of heavy metal lead content, pH value, and organic matter in the soil, the transfer of lead elements in the soil-rice system of Chahayang, Fangzheng, Xiangshui, and Jiansanjiang rice fields can be significantly described, with R2 values ranging from 0.224 to 0.419; Both the pollution index and the comprehensive pollution index in the study area were less than 1, which belong to the non-pollution category. The health risk index of heavy metal lead for adults and children in all five regions is lower than the maximum acceptable risk level recommended by USEPA, and there is no risk of causing cancer

    松花江流域の汚染源分布及び典型的な汚染物除去に関する研究

    Get PDF
    Songhua River Basin located in Northeast China, owning a total area of 55.68 square kilometers. The Songhua River Basin is the third largest basin in China, after the Yangtze River and the Yellow River. The water quality of Songhua River seriously affects the ecological environment of the basin. It is urgent to scientifically plan pollution sources, improve water quality and ensure residents’ water safety according to the economic development of Songhua River Basin. Based on studying typical pollutant removal methods in Songhua River Basin, this paper studies the pollution source planning in Songhua River Basin. Finally, some suggestions are put forward to solve the pollution sources in Songhua River Basin. Two efficient removal methods of main pollutants are found in this paper, which are not limited to the Songhua River Basin, but also applicable to the pollution control of other waters.北九州市立大

    Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

    Get PDF
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
    corecore