1,533 research outputs found

    Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks

    Full text link
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems

    Job-shop Scheduling and Visibility Studies with a Hybrid ACO Algorithm

    Get PDF

    Preface: Swarm Intelligence, Focus on Ant and Particle Swarm Optimization

    Get PDF
    In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state. The escalating complexity has demanded researchers to find the possible ways of easing the solution of the problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to be efficient in handling the computationally complex problems with competence such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of the biologically inspired algorithms the present book on ""Swarm Intelligence: Focus on Ant and Particle Swarm Optimization"" aims to present recent developments and applications concerning optimization with swarm intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm intelligence, this book also presented some selected representative case studies covering power plant maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems; manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems; wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these topics

    Adaptation and parameters studies of CS algorithm for flow shop scheduling problem

    Get PDF
    Scheduling concerns the allocation of limited resources overtime to perform tasks to fulfill certain criterion and optimize one or several objective functions. One of the most popular models in scheduling theory is that of the flow-shop scheduling. During the last 40 years, the permutation flow-shop sequencing problem with the objective of makespan minimization has held the attraction of many researchers. This problem characterized as Fm/prmu/Cmax in the notation of Graham, involves the determination of the order of processing of n jobs on m machines. In addition, there was evidence that m-machine permutation flow-shop scheduling problem (PFSP) is strongly NP-hard for m ≥3. Due to this NP-hardness, many heuristic approaches have been proposed, this work falls within the framework of the scientific research, whose purpose is to study Cuckoo search algorithm. Also, the objective of this study is to adapt the cuckoo algorithm to a generalized permutation flow-shop problem for minimizing the total completion time, so the problem is denoted as follow: Fm | | Cmax. Simulation results are judged by the total completion time and algorithm run time for each instance processed
    corecore