713 research outputs found

    Short-Term Traffic Prediction Based on Genetic Algorithm Improved Neural Network

    Get PDF
    This paper takes the time series of short-term traffic flow as research object. The delay time and embedding dimension are calculated by C-C algorithm, and the chaotic characteristics of the time series are verified by small data sets method.Then based on the neural network prediction model and the chaotic phase space reconstruction theory, the network topology is determined, and the prediction is conducted by the wavelet neural network and RBF neural network using Lan-Hai expressway experimental data. The results show that the prediction effect of RBF neural network is better. Due to the poor stability of the network caused by the initial parameters randomness, the genetic algorithm is used to optimize the initial parameters. The results show that the prediction error of the optimized wavelet neural network or RBF neural network is reduced by more than 10%, and prediction accuracy of the latter is better

    A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes

    Get PDF
    The spatio-temporal residual network (ST-ResNet) leverages the power of deep learning (DL) for predicting the volume of citywide spatio-temporal flows. However, this model, neglects the dynamic dependency of the input flows in the temporal dimension, which affects what spatio-temporal features may be captured in the result. This study introduces a long short-term memory (LSTM) neural network into the ST-ResNet to form a hybrid integrated-DL model to predict the volumes of citywide spatio-temporal flows (called HIDLST). The new model can dynamically learn the temporal dependency among flows via the feedback connection in the LSTM to improve accurate captures of spatio-temporal features in the flows. We test the HIDLST model by predicting the volumes of citywide taxi flows in Beijing, China. We tune the hyperparameters of the HIDLST model to optimize the prediction accuracy. A comparative study shows that the proposed model consistently outperforms ST-ResNet and several other typical DL-based models on prediction accuracy. Furthermore, we discuss the distribution of prediction errors and the contributions of the different spatio-temporal patterns

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal Prediction

    Full text link
    Accurate Urban SpatioTemporal Prediction (USTP) is of great importance to the development and operation of the smart city. As an emerging building block, multi-sourced urban data are usually integrated as urban knowledge graphs (UrbanKGs) to provide critical knowledge for urban spatiotemporal prediction models. However, existing UrbanKGs are often tailored for specific downstream prediction tasks and are not publicly available, which limits the potential advancement. This paper presents UUKG, the unified urban knowledge graph dataset for knowledge-enhanced urban spatiotemporal predictions. Specifically, we first construct UrbanKGs consisting of millions of triplets for two metropolises by connecting heterogeneous urban entities such as administrative boroughs, POIs, and road segments. Moreover, we conduct qualitative and quantitative analysis on constructed UrbanKGs and uncover diverse high-order structural patterns, such as hierarchies and cycles, that can be leveraged to benefit downstream USTP tasks. To validate and facilitate the use of UrbanKGs, we implement and evaluate 15 KG embedding methods on the KG completion task and integrate the learned KG embeddings into 9 spatiotemporal models for five different USTP tasks. The extensive experimental results not only provide benchmarks of knowledge-enhanced USTP models under different task settings but also highlight the potential of state-of-the-art high-order structure-aware UrbanKG embedding methods. We hope the proposed UUKG fosters research on urban knowledge graphs and broad smart city applications. The dataset and source code are available at https://github.com/usail-hkust/UUKG/.Comment: NeurIPS 2023 Track on Datasets and Benchmark

    Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data

    Full text link
    Traffic forecasting has recently attracted increasing interest due to the popularity of online navigation services, ridesharing and smart city projects. Owing to the non-stationary nature of road traffic, forecasting accuracy is fundamentally limited by the lack of contextual information. To address this issue, we propose the Hybrid Spatio-Temporal Graph Convolutional Network (H-STGCN), which is able to "deduce" future travel time by exploiting the data of upcoming traffic volume. Specifically, we propose an algorithm to acquire the upcoming traffic volume from an online navigation engine. Taking advantage of the piecewise-linear flow-density relationship, a novel transformer structure converts the upcoming volume into its equivalent in travel time. We combine this signal with the commonly-utilized travel-time signal, and then apply graph convolution to capture the spatial dependency. Particularly, we construct a compound adjacency matrix which reflects the innate traffic proximity. We conduct extensive experiments on real-world datasets. The results show that H-STGCN remarkably outperforms state-of-the-art methods in various metrics, especially for the prediction of non-recurring congestion

    Incident duration time prediction using a supervised topic modeling method

    Get PDF
    Precisely predicting the duration time of an incident is one of the most prominent components to implement proactive management strategies for traffic congestions caused by an incident. This thesis presents a novel method to predict incident duration time in a timely manner by using an emerging supervised topic modeling method. Based on Natural Language Processing (NLP) techniques, this thesis performs semantic text analyses with text-based incident dataset to train the model. The model is trained with actual 1,466 incident records collected by Korea Expressway Corporation from 2016-2019 by applying a Labeled Latent Dirichlet Allocation(L-LDA) approach. For the training, this thesis divides the incident duration times into two groups: shorter than 2-hour and longer than 2-hour, based on the MUTCD incident management guideline. The model is tested with randomly selected incident records that have not been used for the training. The results demonstrate that the overall prediction accuracies are approximately 74% and 82% for the incidents shorter and longer than 2-hour, respectively
    corecore