2,267 research outputs found

    Modelos de observador aplicados a la detectabilidad de bajo contraste en tomografía computarizada

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Medicina, leída el 15/01/2016. Tesis formato europeo (compendio de artículos)Introduction. Medical imaging has become one of the comerstones in modem healthcare. Computed tomography (CT) is a widely used imaging modality in radiology worldwide. This technique allows to obtain three-dimensional volume reconstructions ofdifferent parts of the patient with isotropic spatial resolution. Also, to acquire sharp images of moving organs, such as the heart orthe lungs, without artifacts. The spectrum ofindications which can be tackled with this technique is wide, and it comprises brain perfusion, cardiology, oncology, vascular radiology, interventionism and traumatology, amongst others. CT is a very popular imaging technique, widely implanted in healthcare services worldwide. The amount of CT scans performed per year has been continuously growing in the past decades, which has led to a great benefit for the patients. At the same time, CT exams represent the highest contribution to the collective radiation dose. Patient dose in CT is one order ofmagnitude higher than in conventional X-ray studies. Regarding patient dose in X-ray imaging the ALARA criteria is universally accepted. It states that patient images should be obtained using adose as low as reasonably achievable and compatible with the diagnostic task. Sorne cases ofpatients' radiation overexposure, most ofthem in brain perfusion procedures have come to the public eye and hada great impact in the USA media. These cases, together with the increasing number ofCT scans performed per year, have raised a red flag about the patient imparted doses in CT. Several guidelines and recommendation for dose optimization in CT have been published by different organizations, which have been included in European and National regulations and adopted by CT manufacturers. In CT, the X-ray tube is rotating around the patient, emitting photons in beams from different angles or projections. These photons interact with the tissues in the patient, depending on their energy and the tissue composition and density. A fraction of these photons deposit all or part of their energy inside the patient, resulting in organs absorbed dose. The images are generated using the data from the projections ofthe X-ray beam that reach the detectors after passing through the patient. Each proj ection represents the total integrated attenuation of the X-ray beam along its path. A CT protocol is defined as a collection of settings which can be selected in the CT console and affect the image quality outcome and the patient dose. They can be acquisition parameters such as beam collimation, tube current, rotation time, kV, pitch, or reconstruction parameters such as the slice thickness and spacing, reconstruction filter and method (filtered back projection (FBP) or iterative algorithms). All main CT manufacturers offer default protocols for different indications, depending on the anatomical region. The user can frequently set the protocol parameters selecting amongst a range of values to adapt them to the clinical indication and patient characteristics, such as size or age. The selected settings in the protocol affect greatly image quality and dose. Many combinations ofsean parameters can render an appropriate image quality for a particular study. Protocol optimization is a complex task in CT because most sean protocol parameters are intertwined and affect image quality and patient dose...Introducción. La imagen médica se ha convertido en uno de los pilares en la atención sanitaria actual. La tomografía computarizada (TC) es una modalidad de imagen ampliamente extendida en radiología en todo el mundo. Esta técnica permite adquirir imágenes de órganos en movimiento, como el corazón o los pulmones, sin artefactos. También permite obtener reconstrucciones de volúmenes tridimensionales de distintas partes del cuerpo de los pacientes. El abanico de indicaciones que pueden abordarse con esta técnica es amplio, e incluye la perfusión cerebral, cardiología, oncología, radiología vascular, intervencionismo y traumatología, entre otras. La TC es una técnica de imagen muy popular, ampliamente implantada en los servicios de salud de hospitales de todo el mundo. El número de estudios de TC hechos anualmente ha crecido de manera continua en las últimas décadas, lo que ha supuesto un gran beneficio para los pacientes. A la vez, los exámenes de TC representan la contribución más alta a la dosis de radiación colectiva en la actualidad. La dosis que reciben los pacientes en un estudio de TC es un orden de magnitud más alta que en exámenes de radiología convencional. En relación con la dosis a pacientes en radiodiagnóstico, el criterio ALARA es aceptado universalmente. Expone que las imágenes de los pacientes deberían obtenerse utilizando una dosis tan baja como sea razonablemente posible y compatible con el objetivo diagnóstico de la prueba. Algunos casos de sobreexposición de pacientes a la radiación, la mayoría en exámenes de perfusión cerebral, se han hecho públicos, lo que ha tenido un gran impacto en los medios de comunicación de EEUU. Estos accidentes, junto con el creciente número de exámenes TC anuales, han hecho aumentar la preocupación sobre las dosis de radiación impartidas a los pacientes en TC. V arias guías y recomendaciones para la optimización de la dosis en TC han sido publicadas por distintas organizaciones, y han sido incluidas en normas europeas y nacionales y adoptadas parcialmente por los fabricantes de equipos de TC. En TC, el tubo de rayos-X rota en tomo al paciente, emitiendo fotones en haces desde distintos ángulos o proyecciones. Estos fotones interactúan con los tejidos en el paciente, en función de su energía y de la composición y densidad del tejido. Una fracción de estos fotones depositan parte o toda su energía dentro del paciente, dando lugar a la dosis absorbida en los órganos. Las imágenes se generan usando los datos de las proyecciones del haz de rayos-X que alcanzan los detectores tras atravesar al paciente. Cada proyección representa la atenuación total del haz de rayos-X integrada a lo largo de su trayectoria. Un protocolo de TC se define como una colección de opciones que pueden seleccionarse en la consola del equipo y que afectan a la calidad de las imágenes y a la dosis que recibe el paciente. Pueden ser parámetros de adquisición, tales como la colimación del haz, la intensidad de corriente, el tiempo de rotación, el kV, el factor de paso parámetros de reconstrucción como el espesor y espaciado de corte, el filtro y el método de reconstrucción (retroproyección filtrada (FBP) o algoritmos iterativos). Los principales fabricantes de equipos de TC ofrecen protocolos recomendados para distintas indicaciones, dependiendo de la región anatómica. El usuario con frecuencia fija los parámetros del protocolo eligiendo entre un rango de valores disponibles, para adaptarlo a la indicación clínica y a las características del paciente, tales como su tamaño o edad. Las condiciones seleccionadas en el protocolo tienen un gran impacto en la calidad de imagen y la dosis. Múltiples combinaciones de los parámetros pueden dar lugar a un nivel de calidad de imagen apropiado para un estudio en concreto. La optimización de los protocolos es una tarea compleja en TC, ya que la mayoría de los parámetros del protocolo están relacionados entre sí y afectan a la calidad de imagen y a la dosis que recibe el paciente...Depto. de Radiología, Rehabilitación y FisioterapiaFac. de MedicinaTRUEunpu

    A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation.

    Get PDF
    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place

    Performance of three model-based iterative reconstruction algorithms using a CT task-based image quality metric

    Full text link
    In this study we evaluated the task-based image quality of a low contrast clinical task for the abdomen protocol (e.g., pancreatic tumour) of three different CT vendors, exploiting three model-based iterative reconstruction (MBIR) levels. We used three CT systems equipped with a full, partial, advanced MBIR algorithms. Acquisitions were performed on a phantom at three dose levels. Acquisitions were reconstructed with a standard kernel, using filtered back projection algorithm (FBP) and three levels of the MBIR. The noise power spectrum (NPS), the normalized one (nNPS) and the task-based transfer function (TTF) were computed following the method proposed by the American Association of Physicists in Medicine task group report-233 (AAPM TG-233). Detectability index (d') of a small lesion (small feature; 100 HU and 5-mm diameter) was calculated using non-prewhitening with eye-filter model observer (NPWE).The nNPS, NPS and TTF changed differently depending on CT system. Higher values of d' were obtained with advanced-MBIR, followed by full-MBIR and partial-MBIR.Task-based image quality was assessed for three CT scanners of different vendors, considering a clinical question. Detectability can be a tool for protocol optimisation and dose reduction since the same dose levels on different scanners correspond to different d' values.Comment: 7 pages, 5 figures, 3 table

    A novel method for comparing radiation dose and image quality, between and within different X-ray units in a series of hospitals

    Get PDF
    Objectives: To develop a novel method for comparing radiation dose and image quality (IQ) to evaluate adult chest X-ray (CXR) imaging among several hospitals. Methods: CDRAD 2.0 phantom was used to acquire images in eight hospitals (17 digital X-ray units) using local adult CXR protocols. IQ was represented by image quality figure inverse (IQFinv), measured using CDRAD analyser software. Signal to noise ratio (SNR), contrast to noise ratio (CNR) and conspicuity index (CI) were calculated as additional measures of IQ. Incident air kerma (IAK) was calculated using a solid-state dosimeter for each acquisition. Figure of merit (FOM) was calculated to provide a single estimation of IQ and radiation dose. Results: IQ, radiation dose and FOM varied considerably between hospitals and X-ray units. For IQFinv, the mean (range) between and within the hospitals were 1.42 (0.83-2.18) and 1.87 (1.52-2.18), respectively. For IAK, the mean (range) between and within the hospitals were 93.56 (17.26 to 239.15) µGy and 180.85 (122.58-239.15) µGy, respectively. For FOM, the mean (range) between and within hospitals were 0.05 (0.01 to 0.14) and 0.03 (0.02-0.05), respectively. Conclusions: The suggested method for comparing IQ and dose using FOM concept along with the new proposed FOM, is a valid, reliable and effective approach for monitoring and comparing IQ and dose between and within hospitals. It is also can be beneficial for the optimisation of X-ray units in clinical practice. Further optimisation for the hospitals /X-ray units with low FOM are required to minimise radiation dose without degrading IQ

    Studies on ToF-PET using Cherenkov radiation

    Get PDF
    La tomografia ad emissione di positroni (PET) è una tecnica di imaging di medicina nucleare, utilizzata oggi diffusamente in ambito clinico. Essa fornisce immagini e informazioni fisiologiche dei processi funzionali all’interno del corpo. La PET si basa sulla rilevazione di fotoni di annichilazione prodotti in seguito al decadimento di un radio farmaco iniettato nel paziente. I rilevatori convenzionali sono costituiti da un materiale scintillatore accoppiato ad un fotomoltiplicatore, solitamente un PMT o SiPM. Uno sviluppo della PET è la Time of Flight PET (ToF PET), attualmente già in commercio ed utilizzata con prestazioni eccellenti. Un’ulteriore modifica, che potenzialmente permetterebbe di ottenere una migliore risoluzione temporale, è la ToF PET basata sulla rilevazione di fotoni tramite radiazione Cherenkov, invece che luce di scintillazione. Questo lavoro di tesi è incentrato dunque su questa tecnica specifica. Si illustra una rassegna di pubblicazioni scientifiche degli ultimi anni riguardo ad essa con i relativi risultati ottenuti e i possibili sviluppi futuri. Infine si propone un approfondimento personale, nel quale, tramite un programma scritto in ROOT, si è realizzata una geometria di un sistema di rilevazione ToF PET. Esso prevede la rilevazione dei fotoni di annichilazione tramite un radiatore Cherenkov accoppiato ad un SiPM. In futuro questo potrà essere implementato e utilizzato per simulare il processo fisico della PET, verificando la validità e le prestazioni del sistema così sviluppato

    Quantitative Techniques for PET/CT: A Clinical Assessment of the Impact of PSF and TOF

    Get PDF
    Tomographic reconstruction has been a challenge for many imaging applications, and it is particularly problematic for count-limited modalities such as Positron Emission Tomography (PET). Recent advances in PET, including the incorporation of time-of-flight (TOF) information and modeling the variation of the point response across the imaging field (PSF), have resulted in significant improvements in image quality. While the effects of these techniques have been characterized with simulations and mathematical modeling, there has been relatively little work investigating the potential impact of such methods in the clinical setting. The objective of this work is to quantify these techniques in the context of realistic lesion detection and localization tasks for a medical environment. Mathematical observers are used to first identify optimal reconstruction parameters and then later to evaluate the performance of the reconstructions. The effect on the reconstruction algorithms is then evaluated for various patient sizes and imaging conditions. The findings for the mathematical observers are compared to, and validated by, the performance of three experienced nuclear medicine physicians completing the same task

    Validated novel software to measure the conspicuity index of lesions in DICOM images

    Get PDF
    Description of purpose A novel software programme and associated Excel spreadsheet has been developed to provide an objective measure of the expected visual detectability of focal abnormalities within DICOM images. Methodology ROIs are drawn around the abnormality, the software then fits the lesion using a least squares method to recognise the edges of the lesion based on the full width half maximum. 180 line profiles are then plotted around the lesion, giving 360 edge profiles. The co-ordinates show in Figure 1 are captured, as well the standard deviation of the pixel values within the background and lesion (representing anatomical noise and lesion noise respectively). An Excel spreadsheet has been developed to allow variables to be calculated, including SNR and CNR. A conspicuity index has also been developed: Results The software has been validated using the GAMMEX ACR CT accreditation phantom, varying mA, kVp and slice thickness (ST) and the results have been found to give a linear response: Conclusion A novel software programme has been validated to allow calculation of many physical properties of lesions. Additionally, a new measure of conspicuity index has been developed for focal lesions. The analysis could be further developed to incorporate reader decision-analysis data and eye-tracking data allowing correlations between physical and perception measures to be made beyond basic CNR calculations. It could also be used as a tool to distinguish between perceptual and cognitive error. Further refinements could lead to measures of the detectability of more diffuse disease features
    corecore